
Requirements Testing and Verification
for Smart Systems Through Systematic
Software Analysis

David Ke Hong
Dissertation Defense, May 15, 2019
Chair: Professor Z. Morley Mao

1

Smart end systems keep emerging

● Communication & information acquisition
○ Smartphone, wearable, IoT devices

Smartphone Autonomous Vehicle
2

● Transportation & mobility
○ Autonomous vehicle (AV)

Key requirements

● Performance requirements
○ High mobility
○ Dynamic runtime

3

● Security requirements
○ Software complexity
○ Multi-party contribution

● Safety requirements
○ Driving safety logic in AV software

Thesis research goal

● My thesis research: Develop systematic software
analysis approaches for testing and verifying key
performance, security and safety requirements of
smart end systems
○ Static program analysis => completeness guarantee
○ Runtime profiling => capturing runtime dynamics

4

Thesis statement

Systematic software analysis approaches based
on static program analysis and runtime profiling,
with domain-specific customization, can lead to

effective testing and verification of key
performance, security and safety requirements

for smart system software

5

Thesis work overview

Part I: Performance requirement
testing and noncompliance
diagnosis for mobile apps

Part II: Security vulnerability
detection and mitigation in
AV software systems

Part III: Self-driving safety
requirement verification for
AV software

6

Thesis contribution

● Performance requirement testing & problem diagnosis
○ Thesis contribution: low-overhead, cross-layer runtime

profiling and performance diagnosis for smartphone systems

● Security and safety requirement verification
○ Thesis contribution: the first to apply static analysis for

systematic discovery & mitigation of new vulnerability and
verification of safety requirement for AV software systems

7

Part I: A Systematic, Cross-Layer
Performance Diagnosis Framework
for Mobile Platforms

● Platform support for performance requirement validation
● Runtime profiling and performance diagnosis

8

PerfProbe: A Systematic, Cross-Layer Performance Diagnosis Framework for Mobile
Platforms. In MOBILESoft’19.

● Unpredictable performance degradation violates the

performance requirement for smartphone apps
○ 100 popular apps
○ Tail latency: 2∼8x increase

Background

9

● Profiling and associating app and system-layer
runtime events can lead to
○ Holistic, cross-layer insights to better pinpoint the root

cause of performance degradation
■ Built a low-overhead, cross-layer performance profiling and

diagnosis framework, PerfProbe, for mobile platforms
■ Existing work, e.g., AppInsight [OSDI ‘12], Panappticon

[CODES'13], focusing on single-layer runtime profiling

Contribution

10

Why cross-layer profiling

● Motivating example: encrypt a file on SD card

11

Performance degradation due
to slowdown in Encrypt

Why cross-layer profiling

● Motivating example: encrypt a file on SD card

12

Performance degradation
due to slowdown in Disk
read

PerfProbe overview

13

On-device: runtime performance
monitoring and profiling

1. App’s call stack
2. OS event trace

PerfProbe overview

14

Server-side: cross-layer trace
analysis for problem diagnosis

1. App’s call stack
2. OS event trace

On-device: runtime performance
monitoring and profiling

Experiment results

● Cross-layer profiling incurs < 3.5% increase of delay
○ Android’s built-in profiling incurs 3-22% increase

● Usefulness of diagnosis findings
○ Guiding performance optimizing solutions to reduce latency of 6

popular apps by 32-86%

● Findings acknowledged by iNaturalist developer
○ Improve the response of a key interaction with 10x speedup
○ Developer has adopted our fixing suggestion [link]

15

https://github.com/inaturalist/iNaturalistAndroid/issues/375

Conclusion (Part I)

● The first to design a low-overhead, cross-layer
profiling and performance diagnosis framework
for mobile platforms

● Improved performance of 6 popular Android apps
using PerfProbe’s diagnosis findings

16

Part II: Detecting and Mitigating
Publish-Subscribe Overprivilege for
Autonomous Vehicle Systems

● First characterization of overprivilege in AV systems
● Static analysis tool for systematic detection and mitigation

of overprivilege

17

Autonomous vehicle software systems

● Robot Operating System (ROS) middleware
○ Commonly used in various autonomous

systems (e.g., AVs, drones, robots, etc.)

● ROS-based open-source AV platforms

18

Publish-subscribe messaging in AV systems

19

Control

GNSS

Localization

Prediction

Planning

Camera

Perception

Lidar Radar

Canbus

Physical CAN Bus

Routing

HMI

ControlCommand

Sensor input

● Subscriber-side overprivilege
○ Certain fields in a subscribed message are not read =>

over-granted read permission

● Publisher-side overprivilege
○ Certain fields in a published message are not written

by publisher => over-granted write permission

Publish-subscribe overprivilege characterization

20

A B C
M1: <f1, f2> M2: <f2, f3>

M2.f2 = M1.f2

Overprivilege in Baidu Apollo & Autoware

21

void TFBroadcaster::gps_to_transform_stamped(
 const ::apollo::localization::Gps& gps,
 geometry_msgs::TransformStamped* transform) {
 …...
 transform->header.stamp = time.fromSec(gps.header().timestamp_sec());
 …...
 transform->transform.translation.x = gps.localization().position().x();
 transform->transform.translation.y = gps.localization().position().y();
 transform->transform.translation.z = gps.localization().position().z();
 transform->transform.rotation.x = gps.localization().orientation().qx();
 transform->transform.rotation.y = gps.localization().orientation().qy();
 transform->transform.rotation.z = gps.localization().orientation().qz();
 transform->transform.rotation.w = gps.localization().orientation().qw();
}

 Parser
Nodelet

TFBroadcaster
Nodelet

Perception

Gps msg

tf msg

Publisher-side overprivilege on tf.transform

Contribution

● Static program analysis incorporating AV-specific
software programming models can lead to
○ Systematic discovery of security vulnerabilities and

generation of access control defense policies in AV
software systems
■ Built a publish-subscribe overprivilege detection and

mitigation system, AVGuardian, for ROS-based AV systems
■ Achieved zero false positive in overprivilege detection

22

AVGuardian overview

23

Message format
specification

Publish-subscribe
specification

AV source code

Overprivilege
Detection

Runtime Policy
Enforcement

(ROS)

Overprivilege
Policy Generation

Analysis techniques
for zero FP

Interprocedural
dataflow analysis

Overprivileged
message fields

Sub-Op: M1.f1
Pub-Op: M2.f2
Sub-Op: M2.f3

A B C
M1: <f1, f2> M2: <f2, f3>

Overprivileged
field policies

Towards zero FP in overprivilege detection

● Challenges with static program analysis
○ Virtual functions
○ Asynchronous event callbacks

● Customized data flow analysis
○ Conservative subclass binding for virtual functions
○ Enumerating all possible orders of event callbacks
○ Reduced 28 false positives out of 523 true positives

24

Defense: ROS-layer policy enforcement

25

Module B
TopicManager

Subscription
(M1)

Publication
(M2)

Module A
TopicManager

Publication
(M1)

Module C
TopicManager

Subscription
(M1)

Subscription
(M2)

3) Verify M2.f2 using sign(f2)

M1.f1 = NaN
2) M2: <f2, f3>, sign(f2)1) M1: <f1=NaN, f2>, sign(f2)

4) M1: <f1=NaN, f2>

A B C
M1: <f1, f2> M2: <f2, f3>

Vulnerability findings

● Exploits from publisher-side overprivilege
○ TF attack => obstacle relocation
○ PCL attack => obstacle remove
○ Security consequence: vehicle collision

● Exploit from subscriber-side overprivilege
○ VIN stealing attack => leakage of AV’s VIN
○ Security consequence: AV owner’s identity theft

26

TF/PCL attack

27

TF Attack: obstacle relocation

28

TF attack video demoControl group video demo

PCL Attack: obstacle remove

29

PCL attack video demoControl group video demo

Conclusion (Part II)

● The first to design a static analysis framework
for detecting and mitigating overprivilege in AV
software systems

● Performed responsible disclosure to Baidu Apollo
team and confirmed 3 attacks as valid

30

Part III: Verifying Self-Driving Safety
Requirement Compliance for
Autonomous Vehicle Systems

31

● A first driving safety verification framework for AV software
● Static analysis tool for systematic verification of safety rules

Safety requirements for AV software

Does AV software comply with
the defined
object design domain (ODD),
object and event detection
and response (OEDR),
minimal risk condition (MRC)?

Does AV software generate
self-driving decisions obeying
traffic law?

32

Contribution

● Static program analysis incorporating self-driving
semantics can lead to
○ Systematic detection of safety policy violation in the

implementation of AV software
■ Built a safety compliance verification framework, AVerfier, for

AV software systems
■ Towards detecting policy violation with zero false negative

and low false positive

33

Related work & novelty

● Existing work in consistency checking of policy
enforcement
○ Linux security policy & Android permissions

● Key difference: targeting at driving safety policies
○ Containing rich road traffic and driving semantics

○ Requiring specific formulation of driving safety policies
to bridge the semantic gap between policy & code

34

35

Input: AV
software code

Static analysis

Code-level rule
predicates

Violation test case
generation

Symbolic execution

Data flow analysis

Control dependence
analysis

Violation detection

Semantic mapping

Safety rule abstraction

Code-level rule
primitives & actions

Input: AV
safety rules

Violation-triggering
code paths & test cases

Rule action
specification

Rule condition
specification

Domain-specific challenge

● Definition of policy specification

● Solution
○ Policy specification composed by relevant APIs of the

AV software
36

Human-level rule
If traffic light is red,

stop the vehicle

What
specification?

Code-level
verification

Safety policy specification example

● High-level policy
○ If traffic light is red, stop the vehicle

● Specification
○ If signal.color() == TrafficLight::RED, call

BuildStopDecision

● Validated generality on 35 safety rules of traffic
laws

37

Towards completeness of rule verification

● Code-level rule predicate extraction
○ Formulated as control dependencies

38

S1 if x > 2 goto L1
S2 y := 3
S3 L1: z := y + 1

A statement S2 is control dependent on S1 f and only if S2's
execution is conditionally guarded by S1.

Signal light case in Baidu Apollo

39

Action SignalLight::ApplyRule

stop for (auto& signal_light : signal_lights_from_path_) {
 ……
 if ((signal.color() == TrafficLight::RED &&
 stop_deceleration < config_.signal_light().max_stop_deceleration()) ||
 (signal.color() == TrafficLight::UNKNOWN &&
 stop_deceleration < config_.signal_light().max_stop_deceleration()) ||
 (signal.color() == TrafficLight::YELLOW &&
 stop_deceleration < config_.signal_light().max_stop_deacceleration_yellow_light())) {
 …...
 if (BuildStopDecision(frame, reference_line_info, &signal_light)) {
 has_stop = true;
 signal_debug->set_is_stop_wall_created(true);
 }
 }
 …...
 }

Control dependency analysis

40

To identify and extract rule
predicates

signal.color() == TrafficLight::RED &&
 stop_deceleration < config_.signal_light().max_stop_deceleration())

signal.color() == TrafficLight::UNKNOWN &&
 stop_deceleration < config_.signal_light().max_stop_deceleration()

signal.color() == TrafficLight::YELLOW &&
 stop_deceleration < config_.signal_light().max_stop_deacceleration_yellow_light()

BuildStopDecision

…...

true

true

true

false

false

false

Towards completeness of violation checking

41

Towards completeness of rule verification

● Code-level rule predicate extraction
○ Program dependence analysis

42

Policy inconsistency findings in Apollo

● Rule 1: Slow down to 15 mph when approaching a
speed bump.
○ Found in Apollo v3.0 fixed in Apollo v3.5

● Rule 2: Do not pass if you are within 100 feet of an
intersection.
○ Found in Apollo v3.0 fixed in Apollo v3.5

43

Towards low FP rate of violation detection

● Given a violation detected in policy checking,
apply symbolic execution to systematically
validate that a true violation exists
○ Symbolic execution gives proof of completeness
○ Engineering challenge with extending KLEE to run

on AV software code base

44

Future research directions

● Systematic test case generation for violation
○ Preprocessing through flow analysis to prune irrelevant

control flow paths
○ Only apply symbolic execution on relevant paths

● Semantic comparison
○ How to compare code-level predicates with specification

■ Inclusive, partial overlapping, etc.

45

Conclusion (Part III)

● The first to design a static analysis framework
for driving safety compliance verification in AV
software systems

● Proposed AV semantic mapping to enable flexible
specification of driving safety policies with AV
software code-level semantics

46

Conclusion

47

Performance, security and safety are key
requirements for smart end systems.

We perform system-specific customization on
systematic software analysis approaches for

effective requirement testing and verification of
smart system software.

Acknowledgement

48

Other research and industry collaborators: Jason Flinn, Peter Chen, Harsha Madhyastha,

Mark Gordon, Ashkan Nikravesh, John Kloosterman, Ze Zhang, Yulong Cao, Shengtuo

Hu, Jiwon Joung, Brandon Nguyen, Yuqi Jin (UM), Scott Haseley, Geoffrey Challen

(UIUC), Yadi Ma, Sujata Banerjee (HP Labs), Mahesh Ketkar, Michael Kishinevsky (Intel)

Z. Morley Mao Qi Alfred Chen Scott Mahlke Florian Schaub

Conclusion

49

Performance, security and safety are key
requirements for smart end systems

We incorporate system-specific knowledge to
customize systematic software analysis

approaches for effective requirement testing and
verification of smart system software

Reference
[1] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayandeh. AppInsight: Mobile App Performance Monitoring
in the Wild. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, in OSDI’12, 2012.
[2] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda. Panappticon: Event-based Tracing to Measure Mobile Application and
Platform Performance. In Proc. of CODES+ISSS, 2013.
[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions Demystified, in Proc. of ACM CCS, 2011.
[4] E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging Smart Home Applications, in IEEE Security & Privacy, 2016.
[5] H. Chen and D. Wagner. MOPS: an infrastructure for examining security properties of software. In Proc. of ACM CCS, 2002.
A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of authorization hook placement for the Linux security modules framework. In
Proc. of ACM CCS, 2002.
[6] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer overrun detection using linear programming and static analysis. In
Proc. of ACM CCS, 2003.
[7] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Automatically Inferring Security Specification and Detecting Violations. In
Proc. of USENIX Security, 2008.
[8] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission Re-Delegation: Attacks and Defenses. In Proc. of USENIX
Security, 2011.
[9] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor customizations on android security. In Proc. of ACM CCS, 2013.
[10] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection of Capability Leaks in Stock Android Smartphones. In Proc. of
NDSS, 2012.
[11] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao, “Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework,” in NDSS, 2016.

50

