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Smart end systems keep emerging

● Communication & information acquisition
○ Smartphone, wearable, IoT devices

Smartphone Autonomous Vehicle
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● Transportation & mobility
○ Autonomous vehicle (AV)



Key requirements 

● Performance requirements
○ High mobility
○ Dynamic runtime 
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● Security requirements
○ Software complexity
○ Multi-party contribution

● Safety requirements
○ Driving safety logic in AV software



Thesis research goal

● My thesis research: Develop systematic software 
analysis approaches for testing and verifying key 
performance, security and safety requirements of 
smart end systems 
○ Static program analysis => completeness guarantee
○ Runtime profiling => capturing runtime dynamics
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Thesis statement

Systematic software analysis approaches based 
on static program analysis and runtime profiling, 
with domain-specific customization, can lead to 

effective testing and verification of key 
performance, security and safety requirements 

for smart system software 
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Thesis work overview

Part I: Performance requirement 
testing and noncompliance 
diagnosis for mobile apps

Part II: Security vulnerability 
detection and mitigation in 
AV software systems

Part III: Self-driving safety 
requirement verification for 
AV software
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Thesis contribution

● Performance requirement testing & problem diagnosis
○ Thesis contribution: low-overhead, cross-layer runtime 

profiling and performance diagnosis for smartphone systems

● Security and safety requirement verification
○ Thesis contribution: the first to apply static analysis for  

systematic discovery & mitigation of new vulnerability and 
verification of safety requirement for AV software systems
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Part I: A Systematic, Cross-Layer 
Performance Diagnosis Framework 
for Mobile Platforms 

● Platform support for performance requirement validation 
● Runtime profiling and performance diagnosis
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PerfProbe: A Systematic, Cross-Layer Performance Diagnosis Framework for Mobile 
Platforms. In MOBILESoft’19.



● Unpredictable performance degradation violates the 

performance requirement for smartphone apps 
○ 100 popular apps 
○ Tail latency: 2∼8x increase 

Background
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● Profiling and associating app and system-layer 
runtime events can lead to  
○ Holistic, cross-layer insights to better pinpoint the root 

cause of performance degradation
■ Built a low-overhead, cross-layer performance profiling and 

diagnosis framework, PerfProbe, for mobile platforms
■ Existing work, e.g., AppInsight [OSDI ‘12], Panappticon 

[CODES'13], focusing on single-layer runtime profiling

Contribution 
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Why cross-layer profiling

● Motivating example: encrypt a file on SD card 
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Performance degradation due 
to slowdown in Encrypt



Why cross-layer profiling

● Motivating example: encrypt a file on SD card 
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Performance degradation 
due to slowdown in Disk 
read



PerfProbe overview
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On-device: runtime performance 
monitoring and profiling

1. App’s call stack 
2. OS event trace



PerfProbe overview
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Server-side: cross-layer trace 
analysis for problem diagnosis

1. App’s call stack 
2. OS event trace

On-device: runtime performance 
monitoring and profiling



Experiment results

● Cross-layer profiling incurs < 3.5% increase of delay 
○ Android’s built-in profiling incurs 3-22% increase

● Usefulness of diagnosis findings
○ Guiding performance optimizing solutions to reduce latency of 6 

popular apps by 32-86%

● Findings acknowledged by iNaturalist developer 
○ Improve the response of a key interaction with 10x speedup
○ Developer has adopted our fixing suggestion [link]
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https://github.com/inaturalist/iNaturalistAndroid/issues/375


Conclusion (Part I)

● The first to design a low-overhead, cross-layer 
profiling and performance diagnosis framework 
for mobile platforms

● Improved performance of 6 popular Android apps 
using PerfProbe’s diagnosis findings
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Part II: Detecting and Mitigating 
Publish-Subscribe Overprivilege for 
Autonomous Vehicle Systems 

● First characterization of overprivilege in AV systems
● Static analysis tool for systematic detection and mitigation 

of overprivilege
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Autonomous vehicle software systems

● Robot Operating System (ROS) middleware 
○ Commonly used in various autonomous 

systems (e.g., AVs, drones, robots, etc.)

● ROS-based open-source AV platforms 
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Publish-subscribe messaging in AV systems
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● Subscriber-side overprivilege
○ Certain fields in a subscribed message are not read => 

over-granted read permission   

● Publisher-side overprivilege
○ Certain fields in a published message are not written 

by publisher => over-granted write permission

Publish-subscribe overprivilege characterization
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A B C
M1: <f1, f2> M2: <f2, f3>

M2.f2 = M1.f2



Overprivilege in Baidu Apollo & Autoware
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void TFBroadcaster::gps_to_transform_stamped(
    const ::apollo::localization::Gps& gps,
    geometry_msgs::TransformStamped* transform) {
    …...
    transform->header.stamp = time.fromSec(gps.header().timestamp_sec());
    …... 
    transform->transform.translation.x = gps.localization().position().x();
    transform->transform.translation.y = gps.localization().position().y();
    transform->transform.translation.z = gps.localization().position().z();
    transform->transform.rotation.x = gps.localization().orientation().qx();
    transform->transform.rotation.y = gps.localization().orientation().qy();
    transform->transform.rotation.z = gps.localization().orientation().qz();
    transform->transform.rotation.w = gps.localization().orientation().qw();
}

 Parser 
Nodelet

TFBroadcaster 
Nodelet

Perception

Gps msg

tf msg

Publisher-side overprivilege on tf.transform



Contribution

● Static program analysis incorporating AV-specific 
software programming models can lead to  
○ Systematic discovery of security vulnerabilities and 

generation of access control defense policies in AV 
software systems 
■ Built a publish-subscribe overprivilege detection and 

mitigation system, AVGuardian, for ROS-based AV systems
■ Achieved zero false positive in overprivilege detection
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AVGuardian overview
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A B C
M1: <f1, f2> M2: <f2, f3>

Overprivileged 
field policies



Towards zero FP in overprivilege detection

● Challenges with static program analysis 
○ Virtual functions
○ Asynchronous event callbacks

● Customized data flow analysis
○ Conservative subclass binding for virtual functions
○ Enumerating all possible orders of event callbacks
○ Reduced 28 false positives out of 523 true positives
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Defense: ROS-layer policy enforcement 
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Vulnerability findings 

● Exploits from publisher-side overprivilege 
○ TF attack => obstacle relocation
○ PCL attack => obstacle remove
○ Security consequence: vehicle collision

● Exploit from subscriber-side overprivilege
○ VIN stealing attack => leakage of AV’s VIN 
○ Security consequence: AV owner’s identity theft
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TF/PCL attack 
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TF Attack: obstacle relocation
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TF attack video demoControl group video demo



PCL Attack: obstacle remove
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PCL attack video demoControl group video demo



Conclusion (Part II)

● The first to design a static analysis framework 
for detecting and mitigating overprivilege in AV 
software systems

● Performed responsible disclosure to Baidu Apollo 
team and confirmed 3 attacks as valid
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Part III: Verifying Self-Driving Safety 
Requirement Compliance for 
Autonomous Vehicle Systems 
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● A first driving safety verification framework for AV software
● Static analysis tool for systematic verification of safety rules



Safety requirements for AV software

Does AV software comply with 
the defined
object design domain (ODD), 
object and event detection 
and response (OEDR), 
minimal risk condition (MRC)?

Does AV software generate 
self-driving decisions obeying 
traffic law?
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Contribution

● Static program analysis incorporating self-driving 
semantics can lead to 
○ Systematic detection of safety policy violation in the 

implementation of AV software
■ Built a safety compliance verification framework, AVerfier, for 

AV software systems
■ Towards detecting policy violation with zero false negative 

and low false positive
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Related work & novelty

● Existing work in consistency checking of policy 
enforcement
○ Linux security policy & Android permissions

● Key difference: targeting at driving safety policies
○ Containing rich road traffic and driving semantics

○ Requiring specific formulation of driving safety policies 
to bridge the semantic gap between policy & code
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Input: AV 
software code

Static analysis

Code-level rule 
predicates

Violation test case 
generation

Symbolic execution

Data flow analysis

Control dependence 
analysis

Violation detection

Semantic mapping

Safety rule abstraction

Code-level rule 
primitives & actions

Input: AV 
safety rules

Violation-triggering 
code paths & test cases

Rule action 
specification

Rule condition 
specification



Domain-specific challenge 

● Definition of policy specification  

● Solution
○ Policy specification composed by relevant APIs of the 

AV software
36

Human-level rule
If traffic light is red, 

stop the vehicle

What 
specification?

Code-level 
verification



Safety policy specification example

● High-level policy  
○ If traffic light is red, stop the vehicle

● Specification
○ If signal.color() == TrafficLight::RED, call 

BuildStopDecision 

● Validated generality on 35 safety rules of traffic 
laws

37



Towards completeness of rule verification

● Code-level rule predicate extraction
○ Formulated as control dependencies
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S1   if x > 2 goto L1
S2       y := 3   
S3   L1: z := y + 1

A statement S2 is control dependent on S1 f and only if S2's 
execution is conditionally guarded by S1.



Signal light case in Baidu Apollo
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Action SignalLight::ApplyRule

stop for (auto& signal_light : signal_lights_from_path_) {
       ……
       if ((signal.color() == TrafficLight::RED &&
     stop_deceleration < config_.signal_light().max_stop_deceleration()) ||
    (signal.color() == TrafficLight::UNKNOWN &&
     stop_deceleration < config_.signal_light().max_stop_deceleration()) ||
    (signal.color() == TrafficLight::YELLOW &&
     stop_deceleration < config_.signal_light().max_stop_deacceleration_yellow_light())) {
             …...
  if (BuildStopDecision(frame, reference_line_info, &signal_light)) {
       has_stop = true;
       signal_debug->set_is_stop_wall_created(true);
  }
         }
         …...
  }



Control dependency analysis
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To identify and extract rule 
predicates

signal.color() == TrafficLight::RED &&
 stop_deceleration < config_.signal_light().max_stop_deceleration())

signal.color() == TrafficLight::UNKNOWN &&
  stop_deceleration < config_.signal_light().max_stop_deceleration()

signal.color() == TrafficLight::YELLOW &&
 stop_deceleration < config_.signal_light().max_stop_deacceleration_yellow_light()

BuildStopDecision

…...

true

true

true

false

false

false



Towards completeness of violation checking
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Towards completeness of rule verification

● Code-level rule predicate extraction
○ Program dependence analysis
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Policy inconsistency findings in Apollo

● Rule 1: Slow down to 15 mph when approaching a 
speed bump.
○ Found in Apollo v3.0 fixed in Apollo v3.5

● Rule 2: Do not pass if you are within 100 feet of an 
intersection.
○ Found in Apollo v3.0 fixed in Apollo v3.5
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Towards low FP rate of violation detection

● Given a violation detected in policy checking, 
apply symbolic execution to systematically 
validate that a true violation exists
○ Symbolic execution gives proof of completeness 
○ Engineering challenge with extending KLEE to run 

on AV software code base
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Future research directions

● Systematic test case generation for violation 
○ Preprocessing through flow analysis to prune irrelevant 

control flow paths 
○ Only apply symbolic execution on relevant paths

● Semantic comparison
○ How to compare code-level predicates with specification

■ Inclusive, partial overlapping, etc.
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Conclusion (Part III)

● The first to design a static analysis framework 
for driving safety compliance verification in AV 
software systems

● Proposed AV semantic mapping to enable flexible 
specification of driving safety policies with AV 
software code-level semantics
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Conclusion
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Performance, security and safety are key 
requirements for smart end systems.

We perform system-specific customization on 
systematic software analysis approaches for 

effective requirement testing and verification of 
smart system software. 
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Conclusion
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Performance, security and safety are key 
requirements for smart end systems

We incorporate system-specific knowledge to 
customize systematic software analysis 

approaches for effective requirement testing and 
verification of smart system software 
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