
PerfProbe: A Systematic, Cross-Layer Performance
Diagnosis Framework for Mobile Platforms

David Ke Hong†, Ashkan Nikravesh†, Z. Morley Mao†, Mahesh Ketkar‡, Michael Kishinevsky‡
†University of Michigan, ‡Intel Corporation

{kehong, ashnik, zmao}@umich.edu, {mahesh.c.ketkar, michael.kishinevsky}@intel.com

Abstract—User-perceived performance slowdown in mobile
apps can occur in unpredictable and sophisticated ways, with
root cause spanning at different layers (app or system layer).
There is a lack of effective approaches to provide cross-layer,
holistic insights to diagnose unpredictable performance slowdown
on mobile platforms, motivating us to develop PerfProbe as a
performance diagnosis framework for mobile platforms. Perf-
Probe monitors app performance and records app and system-
layer runtime information in a lightweight manner on mobile
devices, and performs systematic, novel statistical analysis on
collected runtime traces at different layers to localize code-level
performance variance in the form of critical functions and zoom
into them to pinpoint system-level root causes in the form of
relevant resource factors to explain the performance slowdown.
PerfProbe effectively diagnoses performance slowdown due to
various root causes in 22 popular Android apps from real-world
usage monitoring and in-lab testing, by providing holistic, cross-
layer insights to help the root cause diagnosis. Diagnosis findings
from PerfProbe provide actionable insights for root cause finding
and guiding real-world app developers’ code fixing or adjustment
of platform-level policies to reduce user-perceived latency of
6 real Android apps by 32-86%. PerfProbe incurs small system
overhead and impact to app performance at runtime and is
suitable for real-world deployment.

I. INTRODUCTION

With the rapid advancement of mobile computing and

networking technologies, mobile devices have become ubiq-

uitous and the app market is multiplying. Today’s Google

Play store stocks over 2 million Android apps with over 50

billions of total downloads [30], [13]. Different from server-

based applications, mobile apps are user-facing and highly

interactive, and usually running on a resource-constrained and

dynamic environment. These unique runtime features make

apps more likely to be affected by internal device-specific

resource constraints (e.g., CPU, memory, disk) as well as

external environment factors, including network quality and

server-side delay. Variance of some key factors may lead to

large variation in user-perceived latency, degradation of which

is an important type of quality-of-experience (QoE) problems

for mobile apps. As one critical performance metric for a wide

variety of interactive apps, user-perceived latency has recently

drawn attention from the research community [56], [73] and

app industry [29]. Google’s RAIL performance model [46]

shows that a user may lose focus on the task they are perform-

ing if the system response takes over 1 second. Therefore, it

becomes crucial to uncover performance degradation in critical

user interactions and diagnose them at the early testing or

deployment stage, so as to provide app developer or device

vendors with useful hints for implementing effective strategies

to ensure app responsiveness and good user experience.

Our empirical study on 100 popular Android apps shows

that user-perceived performance for key user interactions in

an app can degrade by multiple times in some runs. As

later shown by our diagnosis, such unpredictable performance

slowdown can be due to specific runtime context (§V-C) or

code-level design issues (§V-A). Pinpointing these sophisti-

cated factors requires analyzing app and system-layer infor-

mation collected at runtime. On the one hand, localizing code-

level performance variance with common program abstractions

(e.g., function) provides semantically meaningful hints for root

cause reasoning and code fixing by human developers. On the

other hand, system-wide runtime events record fine-grained

details on how an app interacts with system resources over

time, which may help app developers quantify the runtime

cost of their code to certain types of resource, especially

when an invoked third-party library is proprietary or too

complex to understand its resource intensity. Such resource-

level root cause reasoning is also useful to guide device

vendors’ refinement of system-level configurations or policies

(e.g., buffer size, frequency governor, code offloading [58],

[60], [59]) to achieve better mobile performance.

Unfortunately, we see a lack of effective approach to provide

such cross-layer, holistic insights for helping the diagnosis of

unpredictable performance slowdown on mobile platforms. To

fill this gap, we develop PerfProbe as a performance diagnosis

framework for mobile platforms. PerfProbe does not require

app source code and takes app binary as input. Developers

can specify their interested user interactions to be monitored

through its configuration interface. PerfProbe then monitors

performance of these interactions triggered by real-world

usage and records app and system-layer runtime information in

a lightweight manner on a mobile device. Once performance

slowdown is detected, PerfProbe performs offline diagnosis

by associating the collected runtime traces at different layers

using a statistical learning approach. PerfProbe provides cross-

layer, informative insights as its diagnosis output to facilitate

the root cause analysis by app developers or device vendors:

1) critical function showing the executed function calls whose

slowdown is most correlated to performance degradation; 2)

relevant resource factor indicating what system resource (e.g.,

computation, network, disk, etc.) a critical function interacting

with is most correlated to the slowdown of the function.

Motivated by a real-world app study and subsequent diagnostic

evaluation, our cross-layer characterization approach enables

resource-level understanding compared to existing app-level

profiling approaches [81] (§II-A), and achieves higher accu-

racy in pinpointing the relevant resource factors causing per-

formance slowdown than existing OS monitoring or resource

profiling approaches [85], [11], [32], [66] (§V-D).

To develop PerfProbe, we overcome two major research

challenges. First, recording fine-grained app and OS-layer

runtime information can incur large overhead to a mobile

device and degrades app performance, influencing both user

experience and accuracy of problem diagnosis. To address this

challenge, we propose a novel model-driven adaptive sampling

mechanism to accommodate the different levels of profiling

overhead incurred by different apps on different devices and

achieve lightweight call stack profiling. It performs real-time

monitoring of the performance impact to an app due to

profiling its call stack and based on that adjusting the call

stack dumping frequency to limit its impact within some

configurable threshold (§III-B). Second, a user interaction in

real apps usually involves execution across dozens or hundreds

of threads and even across process boundary, with different

threads bounded by different system resources. To overcome

this challenge, we propose a novel statistical analysis approach

that first zooms into app-level execution to identify a small

set of critical functions and then pinpoints their underlying

resource factors relevant to the cause of performance variance

(§IV). As one main novelty of our system, this two-step critical

function and resource factor characterization imitates human

inspection, but involves no manual efforts.

Our work makes the following research contributions:

• We develop a lightweight performance monitoring mech-

anism with smaller performance impact than state-of-the-

art for mobile platforms that collects detailed app and

system-layer runtime information to support the diagnosis

of unpredictable performance slowdown in mobile apps.

• We design an automated, systematic cross-layer char-

acterization approach that performs two-step statistical

characterization on app and OS-layer traces to pinpoint

critical functions and their underlying relevant resource

factors for explaining the cause of unpredictable per-

formance slowdown in mobile apps. This cross-layer

characterization approach by design can be generalized to

diagnosing similar performance issues in other software

systems.

• Diagnosis findings from PerfProbe on real-world perfor-

mance issues provide valuable insights for guiding code-

level fixing of real-world app developers and adjustment

of platform-level policies to reduce user-perceived latency

of 6 real Android apps by 32-86%.

In the following sections, we will use the term performance

or user-perceived latency interchangeably.

II. MOTIVATION & APPROACH

In this section, we motivate the need of associating app and

OS-layer runtime information for performance analysis using

a popular Android app as a motivating example (§II-A) and

Fig. 1. Performance slowdown due to different root causes (length of the
arrows corresponding to execution time) in Run 1, 2, 3 (from left to right).
No slowdown in Run 1.

present a key design challenge to achieve our diagnosis goal

(§II-B).

A. Motivating Example

We study SSE, a popular Android encryption app, in which

users click a UI button to encrypt a file stored in SD card.

Perturbing different resources in the system consistently causes

severe performance degradation. Figure 1 illustrates the exe-

cution workflow for this interaction in different runs. In this

interaction, the main/UI thread invokes a worker thread to

execute an encryption function that performs three operations:

read the file from SD card, encrypt the bits and write the

encrypted file to SD card. Performance slowdown that occurs

in 2nd and 3rd run, however, are due to different resource

bottlenecks – slow disk I/O in loading the file from the local

storage in one run and insufficient CPU cycles for performing

computation-intensive encrypting operations in the other run.

The benefits of associating app and OS-layer runtime infor-

mation together for performance diagnosis are two-fold. First,

app-level profiling [35], [81] may identify what function calls

lead to performance variance (critical functions SCrypt.scryptN
or Posix.readBytes in Table II) under different resource per-

turbations, but is unable to pinpoint underlying resource bot-

tlenecks that are unique to the runtime. Domain knowledge on

the script or posix library is required for understanding. In fact,

performance slowdowns observed in our deployment study

were caused by app’s invocation of certain system resources

that become a bottleneck (e.g., computation bottleneck due to

the CPU frequency cap enforced by DVFS governor policies in

§V-C1, disk I/O bottleneck due to the read-ahead buffer limit in

§V-C2, etc.), which can hardly be uncovered by analyzing app-

layer execution alone. Second, applying traditional resource

profiling [11], [32] or tracking system calls [66] or primitive

OS events [85] loses track of details of program semantic

(e.g., functions) and cannot provide developers with easy-to-

reason hints to enable further code-level inspection. Moreover,

traditional resource profiling [11], [32] alone, as shown by

our evaluation (§V-D), is sometimes too coarse-grained to

accurately pinpoint the true resource bottleneck.

PerfProbe’s cross-layer diagnosis approach aims to address

these limitations. It localizes to function calls with running

time correlated to the performance variance (a.k.a., critical

 0

 20

 40

 60

 80

 100

1ms 5ms 10ms 20ms 50ms

Pr
of

ili
ng

 o
ve

rh
ea

d
(%

)

Sampling interval

App 1 (Nexus 4)
App 1 (Nexus 6)
App 2 (Nexus 4)
App 2 (Nexus 6)
App 3 (Nexus 4)
App 3 (Nexus 6)

Fig. 2. Profiling in different sampling intervals and hardware platforms

functions), and pinpoints what system resources (e.g., CPU,

network, disk, etc.) they interact with cause their running time

variance (a.k.a., relevant resource factors). In above example,

PerfProbe further pinpoints CPU as the resource bottleneck for

SCrypt.scryptN and disk I/O for Posix.readBytes (Table II).

B. Profiling Challenge

Android’s built-in profiler Traceview [35] (integrated in

CPU profiler [20] in latest Android) provides runtime visibility

of an app’s call stack and can be used for characterizing critical

functions. While its sampling mode [20], which captures the

call stack at fixed sampling intervals, is suggested for reducing

the performance impact to apps, if it is kept always-on for

profiling an actively used app, the app is likely to become

unresponsive and throw an ANR error. Thus, we propose to

support event-triggered profiling on only developer-configured

user interactions (§III-A). Also, our empirical study indicates

that small sampling intervals may still introduce high overhead

to the runtime execution, especially when it involves CPU

or disk I/O intensive workload. Figure 2 shows the profiling

overhead (in relative increase of latency due to profiling) under

different sampling intervals when the computation-intensive

optical character recognition (OCR) is performed to extract

texts from images in 3 popular apps. First, the 10-95% over-

head incurred by small sampling intervals are unacceptable for

real-world deployment. Second, this large overhead may skew

the running time of function calls and affect the accuracy in

pinpointing app-layer execution slowdown [8]. For example,

profiling of App 3 on Nexus 4 device incurs 2-3x increase in

running time of file operations, causing corresponding function

calls (with small running time in reality) to be wrongly

identified as execution hotspots.

As Figure 2 implies, large sampling intervals may lead to

smaller overhead, but by design prevent capturing of function

calls completed within a sampling interval and thus hinder

fine-grained performance inspection. Moreover, though the

profiling overhead commonly decreases when the sampling

interval scales up, the performance impact of profiling varies

across apps with similar workload and across platforms for a

same app. One approach to find a proper sampling interval that

preserves sufficient profiling granularity with small runtime

Fig. 3. PerfProbe overview (“+/-” represents good/bad performance labels)

overhead is profiling in advance, but becomes hard to scale

given the large number of apps and high variety of platforms.

To address this challenge, we propose to track the performance

impact caused by profiling at runtime and based on which

adjust the sampling interval to constrain the profiling overhead

to the current app execution below some configurable bound.

Our approach is agnostic to apps or platforms and requires no

extra manual efforts (§III-B).

C. System Overview

As illustrated in Figure 3, PerfProbe consists of two key

modules: an on-device performance monitoring module
(§III) and a problem diagnosis module deployed on a server

(§IV). Its workflow has following steps: 1) App binaries are

installed and targeted user interactions are configured on a

rooted mobile device running PerfProbe; 2) The on-device

PerfProbe manager in the performance monitoring module

controls the profiling of preconfigured interactions and records

multi-layer runtime traces, which are periodically uploaded to

a remote server (e.g., once per day); 3) The problem diagnosis

module analyzes traces to detect unpredictable performance

slowdown in a user interaction and if any slowdown is detected

performs further diagnosis to provide app developers or device

vendors with cross-layer diagnosis insights.

III. PERFORMANCE MONITORING

PerfProbe’s performance monitoring module measures the

latency of user interactions by instrumenting Android’s UI

framework to intercept common UI input and update events,

and records the app-layer runtime execution using Trace-

view [35] and system-wide OS events using Panappticon [6],

which together form the input to the diagnosis module. To

mitigate the runtime overhead caused by this cross-layer

monitoring, we make two improvements on existing profiling

mechanism in Android.

A. Event-Triggered Profiling

We instrument UI event handlers in Android’s framework

to monitor user’s invocation on UI components of an app in

the run time and start the profiler when certain UI component

(e.g., a touch button on a particular view) is invoked. The

PerfProbe manager provides an interface for developers to

configure user interactions to be profiled, by providing the

resource ID (which is device independent and determined at

compile time) of the UI components for denoting input and

output of an interaction, app package name of an interaction,

and profiling parameters including the profiler’s sampling

frequency and profiling duration. In the run time, when a

pre-configured input UI component is invoked, an intent is

broadcasted and intercepted by PerfProbe manager, which then

launches the profiler based on the configuration. Auxiliary

information (e.g., timestamp, location, network trace, CPU

load, system log) when profiling an interaction can also be

optionally recorded by PerfProbe manager. This asynchronous

messaging, by separating the app execution from the profiling

process, aims to prevent any stall on the app due to the launch

of profiling. One concern with this design is that the profiler

may miss some early phase of the app execution, since the app

does not wait once sending the intent. Through our empirical

study on a wide range of apps (§V-B), we validate that profiled

events consistently cover key execution of an interaction, since

intent messages are received promptly by PerfProbe manager

and profiling starts immediately after a user input is performed.

B. Adaptation of Sampling Intervals

Android’s profiler in sampling mode runs as a background

thread spawned from an app and periodically (at sampling

interval) records the call stack of each thread in an app process

sequentially, during which the whole app process (i.e., all its

threads) is paused. This pause is the major source of overhead

in profiling an app. Due to this design, the pause time depends

on the number of threads in an app process and also the

running time of the profiler thread, which can be affected

by runtime resources of the platform. Our empirical study on

apps of different categories shows that the pause time for one

sampling may vary from several to hundreds of milliseconds.

Following the intuition that profiling should be made less

frequent to cause shorter pause to an app when the app is

performing resource-intensive operations, we propose to adjust

the sampling interval at runtime based on the pause duration

observed in most recent profiling and the computation intensity

of current execution in an app. Based on our observation on

the source overhead, we define the relative profiling overhead
(i.e., the percentage of increase in app latency due to pause

for profiling) as O(n) = P (n)
S(n)+P (n) , where P (n) denotes

the observed app pause duration, S(n) denotes the sampling

interval for nth profiling round. To limit the profiling over-

head, O(n + 1), below some configurable bound during the

intervals when the profiled app will be experiencing high load,

we determine a new sampling interval S(n + 1) using the

following equations with a user configurable bound, denoted

as T (0 < T ≤ 1). Parameter T in our experiments is set to

0.03. Note that we also need to ensure that the new sampling

interval is not shorter than the current pause duration.

S(n+1) =

{
max(S(n), P (n), P (n)

T − P (n)), if high load

max(P (n),min(S(n), P (n)
T − P (n))), otherwise

Following this adaptation model, small sampling intervals

(e.g., 1ms) are initialized when profiling starts and the sam-

pling interval is updated after each sampling. In our current

design, an app is classified as at high load if its total CPU

usage time across multiple cores in the most recent sampling

round exceeds the sampling interval.

IV. PROBLEM DIAGNOSIS

As show in Figure 3, the input to the diagnosis module

includes function call profiles, UI event logs and OS event

traces from deployed devices. User-perceived latencies of an

interaction can be determined from UI event logs. Performance

labels, with the labeling criteria specified by developers,

indicates the occurrence of slowdown in one run based on

the distribution of all measured latencies of an interaction. In

our evaluation, we use a binary indicator for labeling: given

runs of an interaction found with long tail latency doubling or

multiplying average latency, any run with perceived latency

higher than a threshold is associated with a bad performance

label and otherwise a good label. If any unpredictable slow-

down is detected, a two-step trace-based diagnosis (detailed

as follows) is performed to provide human developers with

app and OS-layer diagnostic insights and facilitate root cause

identification.

A. Approach Overview

Running on a cloud server, the diagnosis module performs

trace analysis by first zooming into an app-level program

execution and then inspecting its interaction with OS in two

sequential steps, in order to gain holistic insights on the source

of problem at app program level and the cause of problem

at system level. Specifically, as illustrated in Figure 3, the

first step takes the performance labels and app and library

function call trace for many runs of an interaction as input, and

pinpoints a small subset of functions (a.k.a., critical functions)

within the function call trace that are most accountable for the

performance variance. For each critical function, its executing

thread and time intervals are also generated in the output.

The second step leverages the output of the first step and

OS event traces as input to extract runtime resource usage

features relevant to the execution of each critical function,

including but not limited to CPU, network, disk resource

usage and IPC usage, and associates each critical function to

one or several resource usage features based on correlation

explain what causes its execution slowdown. Finally, both

the critical functions and their relevant resource factors are

presented to human developers to guide their further root cause

analysis of the performance variance. We select functions as

one diagnosis output because they are program semantic-rich

and easy-to-reason for developers, and resource factors as the

other because they are usually related to the root cause of

performance variance. The remaining subsections present the

technical details of this two-step analysis.

B. Critical Function Characterization

In critical function characterization, a candidate set of

critical functions is first selected. Decision tree based learning,

taking each run as one data sample, in which the total

execution time of each critical function candidate acts as an

input feature and the performance label as an input label, is

performed to identify a small set of critical functions with

execution time correlated to the performance variance. In the

generated tree, each node corresponds to a critical function.

Critical function candidate. A critical function satisfies the

following requirements:

• A critical function consumes a significant amount of

execution time of an interaction, based on the intuition

that time-consuming functions tend to cause a stronger

impact on the user-perceived latency of an interaction.

• The execution time of a critical function varies signif-

icantly between runs with different performance labels,

based on the intuition that the extra time spent in that

function will contribute to the overall user-perceived

latency if it causes the performance slowdown.

To fulfill the first requirement, we compute the total time

spent in each function for each run based on the function

call trace. Then we pick the top-K functions with longest total

execution time in each run and merge them across runs to

form a candidate set of critical functions. To satisfy the second

requirement, we aim to select a small set of functions from

the candidate set such that their total execution time in runs

with performance slowdown is consistently longer than that in

runs without performance slowdown. In other words, we can

apply conjunction on this set of functions to discriminate runs

with good performance labels from those with bad labels.

Identifying critical functions. We construct a decision tree

to understand what functions are most correlated to the

performance variance. We use decision trees for two main

reasons. First, a decision tree using a compact combination of

features selected from a large feature set naturally determines

a linear boundary to separate data samples with different

labels. Second, a decision tree well depicts the preconditions

for performance slowdown: with each node identifying a

critical function, given a path from the root node to some

leaf containing performance slowdown instances alone, the

conjunction of nodes along this path defines a precondition for

the slowdown, and the disjunction of all such paths define a set

of preconditions under which performance slowdown occurs.

Decision tree details. We use mutual information gain as the

criteria for node selection. Before the decision tree charac-

terization, we first apply function pruning by evaluating the

relative difference of the total time feature for each function f
in the candidate set: prune f if (mf

− - mf
+) <α (pf95 - pf5). The

relative difference is the absolute difference of means over the

central range of a feature’s values in groups by performance

labels (i.e., mf
−, mf

+), where central range is the difference

between the two 95-percentile values pf95 and pf5 . α is set as 0.1

Fig. 4. Decision tree to characterize critical functions in Vine interaction
(two slowdown preconditions as conjunctions of nodes from the root to
a highlighted leaf, recvfromBytes and SSL read identified as critical
functions, the other two nodes are pruned because the latency of their
corresponding functions is insignificant)

by empirical study. The remaining functions in the candidate

set provide the input features, which along with performance

labels will be used for feature selection to generate splitting

nodes of a decision tree. In feature selection, given a set

of features with equally highest mutual information gain, we

select one with largest relative difference as the splitting node.

Moreover, to reduce the variance and avoid overfitting, we

stop generating a splitting node when it reaches certain depth

or contains too few samples. Through our empirical study, we

find that the depth of a generated decision tree does not usually

go beyond 4 when data samples are completely separated.

We also exclude a node from being considered as a critical

function when it contains too few samples, or when its split

gap (i.e., minimum distance between good and bad samples)

is not significant, or when the latency of its corresponding

function is not significant. We leverage the scikit-learn library

to implement our decision tree and configure the decision tree

to compute gini and apply a best split heuristic for feature

selection [38].

An illustrative example. We use the Vine interaction to

showcase our diagnosis flow. From the deployment study,

we observe 10 out of 100 runs of Vine interaction (listed

in Table VI) show user waiting 2x long as the median. The

decision tree generated from critical function characterization

is shown in Figure 4 that identifies 2 critical functions,

recvfromBytes and SSL read.

C. Resource Factor Characterization

The resource factor characterization takes the output of

the critical function characterization as input and aims to

understand what resource usage causes execution slowdown

in each critical function. To achieve that, we first profile the

resource usage for each critical function by identifying its

execution intervals, under which key resource usage features

are extracted. Decision tree learning is then applied on each

critical function across runs as data samples, with resource

usage features as input features and a binary indicator for

the execution time of the critical function as input labels, to

identify the resource factors relevant to the slowdown of that

critical function.

Identifying relevant execution intervals. Given a set of

critical functions, we define a thread executing it as a critical
thread and its duration as a relevant execution interval. Thus,

a relevant execution interval corresponds to a critical function

and a critical thread. The next step of diagnosis is to narrow

down to these execution intervals and reason why slowdown

happens in each critical function.

To determine the most relevant resource factors, we con-

struct a set of resource features for each critical function.

We summarize key resource features in Table I. Note that the

resource usage feature set is extensible for the characterization.

For each run, we then sum up each type of resource usage

under all relevant execution intervals to form one resource

feature for a critical function.

Extracting resource usage features. To compute how

much time is spent in CPU running state, in interrupt-

ible/uninterruptible sleep state or in the ready state waiting

for context switch-in, we rely on the context switch events

within a relevant execution interval. To extract network or

disk blocking time, we analyze the I/O blocking events within

a relevant execution interval. To obtain IPC wait time, we

compute the waiting time between each binder request and

response within a relevant execution interval. We also compute

the average CPU frequency when a thread is occupying CPU

across its relevant execution intervals based on frequency

governor events.

Pinpointing relevant resource factors. The resource factor

characterization of each critical function is also achieved

through decision tree learning similar to that in the critical

function characterization, in which a corresponding node for

a critical function contains a subset of runs that becomes input

samples to the characterization at this step. The input features

of each sample consists of the key resource usage features

for a critical function. In the critical function characterization,

a threshold on execution time has also been determined for

each critical function, which is used for labeling the input

data in this step. In other words, the label indicates whether

execution slowdown occurs in a critical function. The same

feature pruning and node selection technique applied to critical

function characterization are followed to construct a decision

tree, in which each node identifying a resource usage feature

relevant to the slowdown of a critical function. Using the

example in Figure 4, all 100 samples (88 positive, 12 negative)

are used to characterize the resource factor for recvfromBytes,

resulting in a decision tree with the network blocking time

as its root (i.e., relevant resource factor). Analysis of 88

samples in the left branch (87 positive, 1 negative) pinpoints

interruptible sleep time as the relevant resource factor for

SSL read.

V. EVALUATION

We perform controlled experiments on 5 real Android apps

with synthetic performance variance introduced by perturb-

ing different system resources or triggering a programming

mistake into app source code (summarized in Table II) in

some runs. Diagnosis results demonstrate that our diagnosis

approach can always localize functions with injected faults or

correctly pinpoints the perturbed system resource.

We also conduct a real-world deployment and diagnosis

study to answer following questions. How useful is Perf-

Probe in guiding root cause diagnosis and code fixing of

unpredictable performance issues for real-world app develop-

ers (§V-A)? How effective is PerfProbe in diagnosing real-

world unpredictable performance issues with popular Android

apps (§V-B & §V-C)? What benefit can PerfProbe’s cross-

layer characterization achieve compared to existing diagnosis

approaches (e.g., monitoring system calls, resource profiling)

(§V-D)? How much overhead can PerfProbe incur to a mobile

device and how much performance impact can our adaptive

sampling reduce (§V-E)?

A. Android App Developer Study

We apply PerfProbe to diagnose user-reported performance

problems in 6 open-source Android apps (user rating above

3.5 and over 50K downloads) and report our findings to

their developers for feedbacks. Specifically, we mimic app

developers to conduct followup debugging based on the critical

functions and relevant resource factors output from PerfProbe.

To quantify the extra manual effort for code inspection with

hints from PerfProbe, we define a metric relative extra effort
based on prior works [64], [71], as the ratio of the portion of

app source code we manually inspected based on the critical

functions from PerfProbe to the portion of app source code

invoked in the run time (i.e., baseline).

Table III shows the relative extra effort and summarizes the

root cause findings (detailed in app’s GitHub issue tracker)

for each issue. With PerfProbe, less than 3% of the executed

source code needs to be inspected and the pinpointed resource

factors give direct explanation to the running time variance

in pinpointed critical functions. We reported our findings

through GitHub’s issue tracker to app developers and obtained

acknowledgment from developers of 3 apps (highlighted in

Table III). Based on followup analysis using PerfProbe’s

output, we also suggested feasible optimizing solutions to

some issues. The iNaturalist and Riot developer invited us to

submit pull requests for our suggested solutions. Our suggested

strategy for iNaturalist [39], implemented in 90 lines of code,

has been adopted by its developer (detailed as follows).

Case study. iNaturalist app (over 500K downloads in Google

Play) enables users to view or upload plant and animal obser-

vations. PerfProbe pinpoints Posix.recvfromBytes (invoked by

getAllGuides) as the critical function, with network blocking

time as its relevant resource factor. To trace the source of

network blocking, we investigate the definition of getAllGuides
and discover that a series of HTTP requests are issued sequen-

tially to retrieve many (>1000) JSON objects. As we observe

that users cannot view all loaded items from the UI screen, we

suggest limiting the number of JSON objects to be retrieved

through HTTP requests and adding a “Load more” option

in the UI for users to choose whether to continue loading

Resource feature Description
CPU usage time Time spent in running state by thread T
CPU wait time Time spent in the ready state waiting for CPU by thread T
CPU frequency Average CPU frequency when thread T is running

Interruptible sleep time Time when thread T is in interruptible sleep
Uninterruptible sleep time Time when thread T is in uninterruptible sleep

Network blocking time Time when thread T is blocking for network I/O
Disk blocking time Time when thread T is blocking for local disk I/O

IPC wait time Time spent in inter-process communication by thread T
TABLE I

RESOURCE USAGE FEATURES

App Interaction Injected problem Critical function Relevant resource factor
Download Manager [5] Download a file

H&M [15] View an item Network delay Posix.recvfromBytes Network blocking time
CNET [4] View a post

Sudoku Solver [25] Solve a grid Programming flaw SudokuCore.solveMethodOptimised CPU usage time

SSE [40]
Encrypt a file from
SD card

Background load SCrypt.scryptN CPU wait time

Throttled disk access Posix.readBytes Disk blocking time
TABLE II

DIAGNOSIS RESULTS FOR SYNTHETIC PERFORMANCE ISSUES

App Interaction Root cause summary Relative extra effort
iNaturalist [16] Click Guides tab Overloaded sequential web requests [39] ∗ 0.45%

Riot [36] Open chat room Web requests and computation delay for bitmap decoding [41] ∗ 2.43%
K9 Mail [26] Sync mailbox Occasional loss and re-establishment of IMAP connection [24] ∗ 0.70%

c:geo [3] Search nearby cache Delay for sequential web requests [22] 0.33%
GeoHash Droid [10] Launch app Location query and computation delay for map rendering [42] 2.78%

Tomahawk Player [47] Search songs keyword Web server unavailability [23] 0.81%
TABLE III

SUMMARY OF DIAGNOSIS REPORTING: ∗ INDICATES OUR REPORT IS ACKNOWLEDGED BY APP DEVELOPER

more new items in order to reduce the user waiting time for

UI update [39]. We implemented our suggested strategy [39]

by adding 90 lines of code and validated that it reduces the

user-waiting time for this interaction by 86%. Eventually, the

developer adopted our suggestion and changed the app to load

only the first page of items for better interactive experience [7].

B. Real-World Deployment

To diagnose unpredictable performance slowdown issues in

the real world, we deploy PerfProbe’s monitoring module on

Nexus 4 and 6 devices to monitor common user interactions

for a wide range of popular Android apps. We select top-

ranked Android apps [2], [12] from different categories and

obtain in total 100 popular apps (summarized in Table IV).

For each app, we identified a common interaction based on our

domain knowledge of an app and configure PerfProbe manager

to monitor it. In each deployment run, a subset of selected

apps were installed on a test device and replaced by another

subset in the next run. To mimic real-world daily usage,

a device was brought to different locations, including an

office, campus, and residential environment (all with WiFi

access), where UI inputs were automatically replayed using

UIAutomator [48] to launch an interaction randomly picked

from the preconfigured ones. During the deployment, each

preconfigured interaction was performed for sufficiently many

times (65∼110 runs).

Out of the 100 apps, we discover 11 apps (spanning 6 main

categories in Table IV) in which tail latencies are 1.5∼8x as

Category # of apps Downloads
Tool 32 500K∼500M

Shopping 15 10M∼500M
News 10 50K∼1B
Social 8 50M∼5B
Media 6 100M∼500M

Navigation 5 100M∼5B
Other 24 50K∼500M

TABLE IV
ANDROID APPS FOR PERFORMANCE MONITORING IN THE REAL WORLD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

User waiting time (second)

Flipp
Meitu

OfferUp
Where Am I
Sina News

VLC Player
Google Translate

Vine
Text Fairy

AI Camera
TF Detect

Fig. 5. Unpredictable performance slowdown in popular Android apps

long as the median latency. Figure 5 shows the distribution of

waiting time for the user interactions of these apps (listed in

Table V). Root cause analysis based on PerfProbe’s cross-layer

trace diagnosis is presented in §V-C.

App Interaction Version
Vine [49] Launch app to play a video 5.18.0
Flipp [9] Launch app to load flyers 5.0.1

OfferUp [31] Launch app to load deals 2.2.25
Sina News [37] Click a bookmarked post 4.9.5

Google Translate [14] Translate texts in an image 5.5.0
VLC Player [50] Play a video from SD card 2.0.6

Meitu [28] Enhance a photo in SD card 5.1.9.1
Where Am I [51] View current address 1.14

Text Fairy [44] Extract texts in an image 3.0.8
AI Camera [1] Detect objects in camera Demo
TF Detect [45] Detect objects in camera 1.0.0

TABLE V
ANDROID APPS WITH UNPREDICTABLE PERFORMANCE SLOWDOWN

C. Diagnosis of Performance Issues

We apply PerfProbe to diagnose performance variance

(listed in Table V) uncovered in our deployment study (§V-B).

We label a run as performance slowdown if its waiting time is

longer than the median waiting time by one or two standard

deviation, depending on the skewness of the distribution of

the user waiting time. Table VI summarizes the diagnosis

output of PerfProbe for each case, with their diagnosis details

documented in an anonymous website [33]. We also perform

further analysis and validation based on PerfProbe’s diagnosis

findings as follows.

• For CPU frequency bound, by reconfiguring existing

userspace parameters of the Dynamic Voltage and Fre-

quency Scaling (DVFS) governors [27], the tail latency

of 3 CPU-bounded interactions are reduced by 32-40%.

• For disk I/O factor, by applying a common tweak of a

system parameter to boost the access speed of on-device

SD card, the tail latency of 2 disk-bounded interactions

is reduced by near 50%.

• For network or server-side factor, we investigate network

trace captured by tcpdump for further validation.

• For GPS problem, we trace the destination of the

pinpointed inter-process communication to locate GPS-

related system process.

1) DVFS governor issue: This case study presents diagno-

sis and validation on 3 apps where performance is affected by

the computation speed controlled by DVFS governors.

Problem diagnosis. When performing offline OCR-based text

extraction using Text Fairy on a Nexus 4 device (1.5 GHz

quad-core Krait), as shown in Figure 5, a user may wait

extra 20 seconds (compared to 70 seconds in fast runs) for

English texts to be extracted from an image. PerfProbe iden-

tifies TessBaseAPI.nativeGetHOCRText, defined in Google’s

Tesseract OCR API [43] and invoked by a worker thread, as a

critical function for all slowdown instances. Furthermore, the

average CPU frequency is pinpointed as its relevant resource

factor. Based on the split threshold from the resource factor

characterization, the average frequency along the execution of

the critical fuction reaches above 1.2GHz for all fast runs.

Figure 6 shows the time series of the CPU frequency for the

core on which the critical function is executed for a randomly

picked fast and slow run in traces collected from our real-world

deployment. We can clearly see that the frequency scaling

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 10 20 30 40 50 60 70 80

C
P

U
 F

re
qu

en
cy

 (
G

H
z)

Time (sec)

Fast run
Slow run
Improved

Fig. 6. CPU frquency for executing critical function over time

gets stuck at 1.1GHz in some runs when executing the critical

function and thus leads to slowdown of the overall interaction.

Root cause validation. To validate the root cause in frequency

governor, we intentionally increase the upper frequency limit

for scaling (i.e., scaling max freq) to 1512MHz (maximum

available scaling frequency on Nexus 4) and also change the

governor type from ondemand (default governor type in Nexus

4) to performance right before an interaction is performed.

As a result, the tail user waiting time is reduced by 40%

(to 53 seconds). Interestingly, even when the ondemand or

interactive governor is used, the tail latency can be reduced

to 57 seconds by presetting scaling max freq to 1512MHz.

Figure 6 indicates the execution time for the critical function is

significantly reduced when its execution finishes at maximum

frequency. Note that this strategy is unrealistic as a long-term

strategy given the energy and temperature constraint.

Object detection apps. Our diagnosis on AI Camera and TF
Detect also reveals CPU frequency as the resource bottleneck

for running the pinpointed critical functions for detecting

objects in a camera frame on a Nexus 6 device (2.7 GHz

quad-core Krait 450). Further investigation on the CPU states

leads us to the interactive frequency governor policy: scal-
ing max freq is capped at 1958MHz when either app is

running. To improve their object detection performance, we

initialize scaling max freq as 2649MHz (maximum available

scaling frequency on Nexus 6) and set ondemand governor at

app launch. As a result, the per-frame object detection latency

is reduced by 32% on AI Camera and 40.6% on TF Detect.
2) Disk hardware issue: This case study presents diagnosis

and validation on 2 apps with performance degradation caused

by disk I/O.

Problem diagnosis. As shown in Figure 5, the latency for

playing an HD video (of size 35.5MB) from SD card in

VLC Player or processing a photo (of size 1.93MB) in SD

card in Meitu can take more than 2.5x of median (both

around 4 seconds) on a Nexus 4 device. PerfProbe reveals that

62.5% of slowdown instances are characterized by the critical

functionVideoPlayerActivity.onCreate on the main thread to

load the video playing activity, while the rest happen in exe-

cuting the other critical function MediaCodec.start on the VLC
object thread. Both are bounded by disk blocking. Similarly,

PerfProbe pinpoints the critical function SmartBeautifyActiv-
ity.OnCreate and attributes its slowdown to slow disk I/O for

App Critical functions Relevant resource factors Root cause summary
Vine Posix.recvfromBytes Network blocking time network or server-side delay

NativeCrypto.SSL_read Interruptible sleep time
Sina News Posix.recvfromBytes Network blocking time network or server-side delay

Flipp
OfferUp NativeCrypto.SSL_read Interruptible sleep time network or server-side delay

Google Translate
VLC Player VideoPlayerActivity.onCreate Disk blocking time

MediaCodec.start Disk blocking time Slow SD card read speed
Meitu SmartBeautifyActivity.onCreate Disk blocking time Slow SD card read speed

Where Am I MessageQueue.next IPC wait time GPS signal locking delay
Text Fairy TessBaseAPI.nativeGetHOCRText CPU frequency Frequency capped by governor policy
AI Camera classificationFromCaffe2 CPU frequency Frequency capped by governor policy
TF Detect org.tensorflow.Senssion.run CPU frequency Frequency capped by governor policy

TABLE VI
DIAGNOSIS OUTPUT FOR REAL-WORLD PERFORMANCE SLOWDOWN

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10

C
D

F

User waiting time (second)

VLC Player
VLC Player (fixed)

Meitu
Meitu (fixed)

Fig. 7. Performance improvement by mitigating disk I/O bottleneck

the photo enhancing interaction in Meitu.

Root cause validation. To validate the disk I/O bottleneck,

we increase the SD card access speed for Android devices

by tuning the read-ahead buffer [17], [19], [18]. The read-

ahead buffer defines the size of a disk block to be loaded

into memory for each read. For long sequential file read

operation (e.g., copying large file from SD card), having a

larger read-ahead buffer will usually speed up the read process.

We find its size is set to 128KB by default on Nexus 4

phones and can be configured through the sysfs interface.

Through empirical tuning, we find the SD card read speed on

a Nexus 4 phone is improved significantly as the size of read-

ahead buffer increases from 128KB to 2048KB. Therefore,

we reconfigure the read-ahead cache size as 2048KB on our

Nexus 4 test device, while keeping the other setup unchanged,

to perform controlled testing on both interactions. Figure 7

shows the improvement of user waiting time for both apps

after increasing the read-ahead cache. Specifically, the tail user

waiting time is reduced by 45% (to below 6 seconds) for VLC
Player and by 42% (to below 7 seconds) for Meitu.

D. PerfProbe’s Benefit Highlight

One baseline for performance diagnosis is identifying re-

source bottleneck from the overall resource usage throughout

the whole execution of an interaction. This approach leads to

misidentification of resource bottlenecks in 8 out of 22 cases,

including Text Fairy, AI Camera, TF Detect (true cause

is the CPU frequency cap set by the DVFS governor), VLC
Player (true cause is disk I/O delay), Where Am I (true cause

is GPS handling delay), Riot (true cause is server-side delay

and waiting time on CPU resource) and K9 mail, iNaturalist
(true cause for both is server-side delay). Therefore, critical

function characterization is indeed necessary for achieving

high accuracy in pinpointing relevant resource factors.

Another baseline approach is monitoring system calls. For

issues due to the DVFS governor, while system calls can

hardly reveal frequency change on different CPU cores, iden-

tifying the computation bottleneck caused by frequency gover-

nor can be inaccurate even when general resource profiling is

used. For issues due to the disk I/O bottleneck, we try profiling

system calls using strace on both cases to check if the run

time of disk-related system calls has significant variance to

account for the bottleneck, but find that the total run time

spent in system calls for both cases take up less than 5%

of the overall latency and that disk-related calls do not show

significant variance in the run time.

E. Runtime Impact & System Overhead

App performance impact. To evaluate the benefit of our

adaptive sampling mechanism for app profiling, we con-

duct a controlled experiment to measure profiling impact on

app performance (i.e., increase of user-perceived latency in

PerfProbe) under adaptive and fixed 10ms/20ms sampling

interval (baseline). Compared to fixed sampling intervals, our

adaptive sampling mechanism increases the sampling interval

of Traceview when resource-intensive operations are ongoing

for some apps and converges at a larger interval to maintain

low runtime overhead. The sampling interval decreases and

converges to 5-50ms once those expensive operations finish.

For interactions in Table II, III, VI, adaptive sampling incurs

at most 3.5% increase of the median latency of an interaction,

while fixed sampling intervals incur 3-22% increase. Note that

this 3.5% increase causes negligible effect to detecting and

diagnosing performance slowdown with at least 50% increase

of the overall latency. Though adaptive sampling may miss

function calls with small running time due to reduced sampling

frequency for accommodating resource-intensive operations,

the output critical functions and relevant resource factors for

all studied interactions remain consistent with fixed sampling

intervals and adaptive sampling, mainly because only top-

K time-consuming functions are taken as input for critical

function characterization.

CPU & memory overhead. In our current prototype, Perf-

Probe manager uses a 10MB memory buffer for logging OS

kernel events, a 15MB buffer for Android framework events

and Traceview’s default 8MB buffer for an app’s call stack.

PerfProbe showed no noticeable increase in CPU or memory

usage in our deployment. We also measure the logging time

(averaged over 100K executions): logging a kernel event takes

less than 1 microsecond and logging a framework event takes

3.2 microseconds in an instrumented function.

Storage & energy overhead. In our current prototype, func-

tion call and OS event traces are stored in the local storage

of a device and periodically uploaded to a remote server

when certain network (e.g., in WiFi network) and/or battery

condition (e.g, charging state) is met. We conduct a controlled

measurement on a Nexus 4 device: based on the PhoneLab [34]

data we find that 85% of the time real users perform no more

than 210 interactions per day, so we replay 210 interactions

on the 11 apps with performance slowdown uncovered from

the deployment study (§ V-B) using UIAutomator [48]

for 5 times with or without PerfProbe enabled, and measure

the average storage and energy overhead caused by Perf-

Probe. Measurement results show that each interaction incurs

10KB∼500KB function call trace and on average 2.2MB OS

event trace. Given the growing capacity of mobile device

storage and high availability of WiFi networks for trace

uploading, this storage overhead is acceptable for real-world

deployment of PerfProbe. Moreover, PerfProbe incurs only

1.9% energy overhead to a smartphone device.

VI. RELATED WORK

Mobile performance diagnosis: Functionality bugs, crashes

or performance issues in mobile apps can be uncovered

through automated UI testing [52], [53], [74], [54], [80],

[63], [56], [62], [75], [76], [70], runtime analysis [68], [81],

[85], [56], [65], [82], [55] or static analysis [69], [73]. First,

static analysis is not proper for uncovering runtime cause of

performance issues since it does not capture runtime contexts.

Second, PerfProbe is complementary to existing app testing

and profiling tools. PerfProbe can be used to monitor user in-

teractions with performance issues detected from testing tools

and perform further trace-based diagnosis to help understand

the root cause of the issues. Moreover, PerfProbe comple-

ments existing profiling-based diagnosis systems in providing

an automated systematic approach that performs lightweight

profiling and holistic analysis of app and OS-layer runtime

events to guide the root cause diagnosis of a broad category

of real-world performance issues, which is less extensively

explored. PerfProbe’s cross-layer characterization can provide

systematic root cause reasoning and validation on potentially

runtime-expensive operations detected by existing tools [73],

[84], [82]. PerfProbe leverages Panappticon’s instrumentation

framework [85] to record OS events and Traceview [35],

[20] to capture an app’s call stack, but provides a new

diagnosis approach by systematically associating such cross-

layer runtime information to gain holistic understanding on the

cause of performance slowdown. App instrumentation [81],

[61], [67] may achieve lower monitoring overhead compared

to Traceview, but requires specification from app developers

and is thus unscalable for systematic localization of code-level

performance variance (i.e., critical function) in arbitrary apps.

Cross-layer analysis: Cross-layer analysis was applied to

investigate the performance of wearable systems [72] and

smartphone platforms [79], [83], [56]. ARO [79] mainly

focuses on radio resource efficiency problems rather than app

QoE, while QoE Doctor cannot break down app latencies into

more fine-grained operations, such as disk access and inter-

process communication that PerfProbe can address, due to the

lack of system or application event profiling.

Performance diagnosis using ML: Previous works [57], [77]

apply machine learning techniques on system logs to diagnose

performance problems in distributed systems. Decision tree

is also used for per-application QoS-to-QoE mapping for

QoE inference of mobile apps [78]. Though PerfProbe also

leverages decision tree learning, the use of decision tree in

the two-step analysis is new and different from them.

VII. DISCUSSION

We discuss the scope and limitations of PerfProbe and the

threats to the validity of our experiments. First, PerfProbe’s

approach is general to other mobile platforms, e.g., iOS using

Instruments [21]. Second, current PerfProbe targets at perfor-

mance slowdown occurring occasionally. To diagnose slow-

down that consistently occurs, additional mechanism, such as

resource amplification [73], [84], [82], can be leveraged to

amplify resource-intensive operations for enabling PerfProbe’s

differential analysis. Third, as the output of PerfProbe, the

critical functions and relevant resource factors facilitate the

root cause analysis of performance issues and may not be

the actual root cause. Forth, the synthetic performance issues

(Table II) are mainly for validating the accuracy in pinpointing

critical functions and relevant resource factors, but the injected

performance causes are ell encountered in our real-world app

deployment and effectively pinpointed by PerfProbe.

VIII. CONCLUSION

PerfProbe is a mobile performance diagnosis framework

that associates app and OS-layer runtime information in a

lightweight manner to provide holistic, cross-layer insights

to the root cause of unpredictable performance slowdown in

real-world usage. PerfProbe effectively pinpoints code-level

or system resource-layer factors for performance slowdown in

22 Android apps and guides real-world Android developers’

code-level fixing to significantly improve app responsiveness.

ACKNOWLEDGEMENTS

We would like to thank Qi Alfred Chen, Yihua Guo, Yunhan

Jia, Yuru Shao, Shichang Xu, Yikai Lin and anonymous

reviewers for useful feedbacks. This work is partially funded

by NSF under the grants CNS-1629763 and CCF-1628991.

REFERENCES

[1] AI Camera Demo App. https://caffe2.ai/docs/AI-Camera-demo-android.
html.

[2] App Annie - Top Apps on Google Play. https://www.appannie.com/
apps/google-play/top/.

[3] c:geo. https://play.google.com/store/apps/details?id=cgeo.geocaching.
[4] CNET. https://play.google.com/store/apps/details?id=com.treemolabs.

apps.cnet.
[5] Download Manager. https://play.google.com/store/apps/details?id=com.

acr.androiddownloadmanager.
[6] Event-Based Tracing to Measure Android Application and Platform

Performance. https://github.com/EmbeddedAtUM/panappticon.
[7] Faster loading for all guides - just show the first page of

results. https://github.com/inaturalist/iNaturalistAndroid/commit/
ea6d2892d545cc6ae203edcf6823f0200d446fd0.

[8] First Impressions Count: Boost Your App’s Start-Up Time.
https://developer.amazon.com/blogs/post/Tx1RLL07TPIH1RJ/
First-Impressions-Count-Boost-Your-App-s-Start-Up-Time.html.

[9] Flipp - Weekly Ads & Coupons. https://play.google.com/store/apps/
details?id=com.wishabi.flipp.

[10] Geohash Droid. https://play.google.com/store/apps/details?id=net.
exclaimindustries.geohashdroid.

[11] GNU gprof. https://sourceware.org/binutils/docs/gprof/.
[12] Google Play. https://play.google.com/store.
[13] Google play: number of android app downloads

2010-2016. https://www.statista.com/statistics/281106/
number-of-android-app-downloads-from-google-play/.

[14] Google Translate. https://play.google.com/store/apps/details?id=com.
google.android.apps.translate.

[15] H&M. https://play.google.com/store/apps/details?id=com.hm.
[16] iNaturalist. https://play.google.com/store/apps/details?id=org.inaturalist.

android.
[17] Increase Read Cache for better SD Card access. https://forum.

xda-developers.com/showthread.php?t=1010807.
[18] Increase the read/write speed of the SD card on your rooted Android

tablet. https://goo.gl/PNyYHa.
[19] Increase Your SD Card Read Speeds By 100-200% With A Simple

Tweak. https://goo.gl/Hpce69.
[20] Inspect CPU activity with CPU Profiler. https://developer.android.com/

studio/profile/cpu-profiler.
[21] Instruments User Guide. https://developer.apple.com/library/content/

documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/.
[22] Intermittent slowdown for loading nearby cache. https://github.com/

cgeo/cgeo/issues/6632.
[23] Intermittently long waiting time for search result to be displayed. https:

//github.com/tomahawk-player/tomahawk-android/issues/86.
[24] Intermittently slowness for mailbox refreshing. https://github.com/

k9mail/k-9/issues/2575.
[25] JSON Sudoku Solver. https://play.google.com/store/apps/details?id=

com.musevisions.android.SudokuSolver.
[26] K-9 Mail. https://play.google.com/store/apps/details?id=com.fsck.k9.
[27] Linux CPUFreq User Guide. https://www.kernel.org/doc/

Documentation/cpu-freq/user-guide.txt.
[28] Meitu - Beauty Cam, Easy Photo Editor. https://play.google.com/store/

apps/details?id=com.mt.mtxx.mtxx.
[29] NimbleDroid Blog. http://blog.nimbledroid.com/.
[30] Number of android applications. http://www.appbrain.com/stats/

number-of-android-apps.
[31] OfferUp - Buy. Sell. OfferUp. https://play.google.com/store/apps/details?

id=com.offerup.
[32] OProfile. http://oprofile.sourceforge.net/.
[33] PerfProbe Case Study. https://sites.google.com/site/perfprobe/case.
[34] PhoneLab: A Smartphone Platform Testbed. https://www.phone-lab.org/.
[35] Profiling with Traceview and dmtracedump. https://developer.android.

com/studio/profile/traceview.html.
[36] Riot.im - open team collaboration. https://play.google.com/store/apps/

details?id=im.vector.alpha.
[37] Sina News. https://play.google.com/store/apps/details?id=com.sina.

news.
[38] sklearn.tree.decisiontreeclassifier. http://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.html.
[39] Slow loading of ALL Guides tab. https://github.com/inaturalist/

iNaturalistAndroid/issues/375.

[40] SSE - Universal Encryption App. https://play.google.com/store/apps/
details?id=com.paranoiaworks.unicus.android.sse.

[41] Suggestion for improving directory loading performance. https://github.
com/vector-im/riot-android/issues/1473.

[42] Suggestion for improving map rendering performance during app launch.
https://github.com/CaptainSpam/geohashdroid/issues/67.

[43] Tesseract Open Source OCR Engine. https://github.com/tesseract-ocr/
tesseract.

[44] Text Fairy (OCR Text Scanner). https://play.google.com/store/apps/
details?id=com.renard.ocr.

[45] TF Detect. https://play.google.com/store/apps/details?id=org.tensorflow.
app&hl=en US.

[46] The RAIL Performance Model. https://developers.google.com/web/
tools/chrome-devtools/profile/evaluate-performance/rail.

[47] Tomahawk Player Beta. https://play.google.com/store/apps/details?id=
org.tomahawk.tomahawk android.

[48] UI Automator. https://developer.android.com/training/testing/
ui-automator.

[49] Vine Camera. https://play.google.com/store/apps/details?id=co.vine.
android.

[50] VLC for Android. https://play.google.com/store/apps/details?id=org.
videolan.vlc.

[51] Where Am I? https://play.google.com/store/apps/details?id=com.ejelta.
whereami.

[52] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon. Using GUI Ripping for Automated Testing of Android
Applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, 2012.

[53] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated Concolic
Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
FSE ’12, 2012.

[54] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’13, 2013.

[55] M. Brocanelli and X. Wang. Hang Doctor: Runtime Detection and
Diagnosis of Soft Hangs for Smartphone Apps. In Proc. of the 2014
ACM European Conference on Computer Systems, EuroSys ’18, 2018.

[56] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau. QoE Doctor: Diagnosing Mobile App QoE with Automated
UI Control and Cross-layer Analysis. In Proc. of IMC, 2014.

[57] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control. In Proceedings of the 6th Con-
ference on Symposium on Opearting Systems Design & Implementation,
OSDI’04, 2004.

[58] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making Smartphones Last Longer
with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’10, 2010.

[59] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.
Mao. Accelerating Mobile Applications Through Flip-Flop Replication.
In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, 2015.

[60] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: Code Offload by Migrating Execution Transparently. In
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, 2012.

[61] S. Hao, D. Li, W. G. Halfond, and R. Govindan. SIF: A Selective In-
strumentation Framework for Mobile Applications. In Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’13, 2013.

[62] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA: Pro-
grammable UI-automation for Large-scale Dynamic Analysis of Mobile
Apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’14, 2014.

[63] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, Effectively Detecting
Mobile App Bugs with AppDoctor. In Proc. of the 2014 ACM European
Conference on Computer Systems, EuroSys ’14, 2014.

[64] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05,
2005.

[65] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu. DiagDroid: Android
Performance Diagnosis via Anatomizing Asynchronous Executions. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, 2016.

[66] N. Khadke, M. P. Kasick, S. P. Kavulya, J. Tan, and P. Narasimhan.
Transparent system call based performance debugging for cloud com-
puting. In Proceedings of the 2012 Workshop on Managing Systems
Automatically and Dynamically, 2012.

[67] C. H. Kim, J. Rhee, K. H. Lee, X. Zhang, and D. Xu. PerfGuard:
Binary-centric Application Performance Monitoring in Production Envi-
ronments. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, 2016.

[68] C. H. Kim, J. Rhee, H. Zhang, N. Arora, G. Jiang, X. Zhang, and
D. Xu. IntroPerf: Transparent Context-sensitive Multi-layer Performance
Inference Using System Stack Traces. In The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’14, 2014.

[69] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek. Mantis: Automatic Perfor-
mance Prediction for Smartphone Applications. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference, USENIX
ATC’13, 2013.

[70] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling Muta-
tion Testing for Android Apps. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
2017.

[71] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statistical
model-based bug localization. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, 2005.

[72] R. Liu and F. X. Lin. Understanding the Characteristics of Android
Wear OS. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’16, 2016.

[73] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and Detecting
Performance Bugs for Smartphone Applications. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014,
2014.

[74] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input Generation
System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, 2013.

[75] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2016, 2016.

[76] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek. Reducing
Combinatorics in GUI Testing of Android Applications. In Proceedings
of the 38th International Conference on Software Engineering, ICSE
’16, 2016.

[77] K. Nagaraj, C. Killian, and J. Neville. Structured Comparative Analysis
of Systems Logs to Diagnose Performance Problems. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, 2012.

[78] A. Nikravesh, D. K. Hong, Q. A. Chen, H. V. Madhyastha, and Z. M.
Mao. QoE Inference Without Application Control. In Proceedings of
the 2016 Workshop on QoE-based Analysis and Management of Data
Communication Networks, Internet-QoE ’16, 2016.

[79] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Profil-
ing Resource Usage for Mobile Applications: A Cross-layer Approach.
In Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, 2011.

[80] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic
and Scalable Fault Detection for Mobile Applications. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’14, 2014.

[81] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh. AppInsight: Mobile App Performance Monitoring in the
Wild. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, 2012.

[82] Y. Wang and A. Rountev. Profiling the Responsiveness of Android
Applications via Automated Resource Amplification. In Proceedings
of the International Conference on Mobile Software Engineering and
Systems, MOBILESoft ’16, 2016.

[83] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. ProfileDroid: Multi-
layer Profiling of Android Applications. In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
MobiCom ’12, 2012.

[84] S. Yang, D. Yan, and A. Rountev. Testing for Poor Responsiveness
in Android Applications. In 2013 1st International Workshop on the
Engineering of Mobile-Enabled Systems, MOBS ’13, 2013.

[85] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda. Panappticon:
Event-based Tracing to Measure Mobile Application and Platform
Performance. In Proc. of CODES+ISSS, 2013.

