
PerfProbe: A Systematic, Cross-Layer
Performance Diagnosis Framework for
Mobile Platforms

David Ke Hong, Ashkan Nikravesh, Z. Morley Mao,
Mahesh Ketkar, and Michael Kishinevsky.

1

● How to effectively diagnose the cause of unpredictable

performance problems in mobile apps?
○ Study on 100 popular apps
○ Tail latency: 2∼8x increase

Unpredictable performance problem

2

Related work

● App performance profiling
○ Existing work: AppInsight [OSDI ‘12], Traceview, etc.
○ Lack of understanding on system resource bottleneck

3
[1] AppInsight: Mobile App Performance Monitoring in the Wild. In OSDI ‘12.

● OS event tracing
○ Existing work: Panappticon [CODES '13], Systrace, etc.
○ Hard to localize the source of code-level execution

slowdown based on low-level OS events

[2] Panappticon: Event-Based Tracing to Optimize Mobile Application and Platform Performance. In CODES+ISSS ’13.

Why cross-layer profiling & analysis

● Motivating example: encrypt a file on SD card

4

PerfProbe overview

5

On-device: runtime profiling for
performance monitoring

1. App’s call stack
2. UI event trace
3. OS event trace

PerfProbe overview

6

Server-side: offline trace
analysis for problem diagnosis

On-device: runtime profiling for
performance monitoring

1. App’s call stack
2. UI event trace
3. OS event trace

Research contribution

● Low-overhead, cross-layer runtime monitoring
○ Sampling frequency adaptation for app profiling

along execution to limit the performance overhead

● Problem diagnosis through associating app and
OS-layer runtime events
○ Trace analysis based on decision tree learning to

pinpoint both code and system-level diagnosis hints

7

● Android UI framework instrumentation
○ To measure user-perceived latency

● Traceview [1]

○ Time spent in each function at an app’s call stack
○ Code-level function execution

● Panappticon [2]

○ OS events over time on each thread during execution
○ System resource usage

Runtime performance monitoring

8
[1] Android Traceview. https://developer.android.com/studio/profile/traceview.html
[2] Panappticon: Event-Based Tracing to Optimize Mobile Application and Platform Performance. In CODES+ISSS ’13.

https://developer.android.com/studio/profile/traceview.html

High overhead with app profiling

● Observation on call stack sampling in Traceview
○ Android runtime periodically pauses all threads of an app

to dump its call stack => extra app latency (> 20% increase)

9

● Relative profiling overhead O(n): percentage of
increase in app latency due to a pause for sampling
○ P(n): observed app pause duration in nth sampling round
○ S(n): sampling period in nth sampling round

Sampling frequency adaptation

● Adaptation of an app’s call stack sampling frequency
to maintain low overhead along app execution
○ A configurable bound T for relative overhead (0 < T ≤ 1).

10

Problem diagnosis

11

Critical function
characterization

Relevant resource factors

Performance labels

OS event trace
Resource factor
characterization

Critical functions & threads

Function call trace Traceview

Panappticon

+/-

Step 1: critical function characterization

12

Performance label

Critical function candidate
selection

Critical functions & threads

Function call traceFunction feature extraction

Decision tree characterization

…...

+/-

Property of critical functions
- Time-consuming
- Most correlated to the
performance slowdown

func1

func2

func3

func1

func2

func3

Fast run

Slow run

13

Critical function characterization

Decision tree based critical function selection
- Input features: total time spent in a function
- Input label: indicator of performance slowdown

Critical function characterization

14

Slowdown preconditions:
1) recvfromBytes > 3.41sec AND nativeExecuteForCursorWindow > 0.44sec AND

writeBytes > 0.40sec

Critical function characterization

15

Slowdown preconditions:
1) recvfromBytes > 3.41sec AND nativeExecuteForCursorWindow > 0.44sec AND

writeBytes > 0.40sec
2) recvfromBytes <= 3.41sec AND SSL_read > 6.74sec

Step 2: resource factor characterization

16

Performance label

Relevant Interval Identification

Relevant resource factors

Resource usage extraction

Decision tree characterization

…...

OS event trace

Critical functions & threads

Relevant resource factors for a critical function

● Resource usage for a critical function
○ Relevant interval Imt: time intervals when a critical

function m is invoked by thread t
○ Compute resource usage under all Imt for function m

17

● Decision tree based resource factor selection
○ Input features: usage on various types of resource
○ Input label: indicator of critical function slowdown
○ Output tree nodes => relevant resource factors

Relevant resource factors

18

Posix.recvfromBytes NativeCrypto.SSL_read

Longer time blocking for network I/O
-> network factor

Longer time in interruptible sleep
-> I/O event delay

Experiment results summary

● Cross-layer profiling incurs < 3.5% increase of delay
○ Traceview’s sampling profiling incurs up to 22% increase

19

● Performed diagnosis on 22 popular Android apps
○ Relevant resource factors: network/server, CPU, disk I/O
○ Cross-layer vs. pure resource profiling: pinpointed true

relevant resource factors in 8 apps

● Android app developer study
○ iNaturalist app developer acknowledged our diagnosis and

adopted our problem fixing direction (10x speedup)

Real-world app developer study

20

Real-world problem
collection

Problem reproducing

Problem diagnosis

Report to developer

Crawl user-reported performance
problems from issue trackers

Repeated testing of related
interactions

PerfProbe’s cross-layer diagnosis
finding

Collect developer’s feedback for
tool evaluation

iNaturalist case study

21

iNaturalist case study

22

Conclusion

● PerfProbe as a mobile diagnosis framework for
unpredictable performance problems

● PerfProbe performs low-overhead, cross-layer
monitoring and trace collection

● PerfProbe perfomrs cross-layer trace analysis for
performance problem diagnosis

23

Q & A

24

Thank You

High overhead with app profiling

● Traceview with sampling of call stack

25

Setting a proper sampling
frequency requires app and
device-specific profiling

App 1, 2, 3 performing similar optical
character recognition workload

● Configuration interface

Usage-triggered monitoring

26

Performance Testing

User interaction metafile

Unpredictable performance slowdown?

Repeated testing across environments and time

UI input
UI output of interest
….

Tail latency > median latency + k*std, k=1, 2

Relevant resource factors on disk I/O

27

Tail user waiting time reduced:
by 45% (to < 6sec) for VLC Player
by 42% (to < 7sec) for Meitu

Diagnosis findings: slowdown
due to disk I/O on Nexus 4

Fixing: increasing the size of
read-ahead buffer

Diagnosing user-reported problems

28

App Interaction Root cause findings

K9 mail Sync mailbox IMAP connection loss

iNaturalist Click All Guides Too many web requests

Riot Load a directory Computation bound for large bitmap loading

cgeo Search nearby cache Sequential network requests

GeoHashDroid Launch app GPS signal handling

TomaHawk Search songs Dependency on web requests

Developers invites us to implement proposed improvement
(iNaturalist and Riot app)

