PerfProbe: A Systematic, Cross-Layer
Performance Diagnosis Framework for
Mobile Platforms

David Ke Hong, Ashkan Nikravesh, Z. Morley Mao,
Mahesh Ketkar, and Michael Kishinevsky.

e intel)

BV

Unpredictable performance problem

® How to effectively diagnose the cause of unpredictable
performance problems in mobile apps’?

1

o Study on 100 popular apps ,
o Tail latency: 2~8x increase ©8 Fiipp s
Q7 Off'\g?f}; —
0.6 Sina News
L oogle Translate ==
Q 0.5 Ving mmmm
O Al Camera
\\l,/ 0.4 TF Detect
> ~ 0.3
LOADING 0.2 ‘
0.1 |
1 10 100

User waiting time (second)

Related work

e App performance profiling

o Existing work: Applnsight [OSDI “12], Traceview, etc.
o Lack of understanding on system resource bottleneck

e OS eventtracing

o Existing work: Panappticon [CODES "13], Systrace, etc.
o Hard to localize the source of code-level execution
slowdown based on low-level OS events

[1] Applnsight: Mobile App Performance Monitoring in the Wild. In OSDI “12.
[2] Panappticon: Event-Based Tracing to Optimize Mobile Application and Platform Performance. In CODES+ISSS *13.

Why cross-layer profiling & analysis

e Motivating example: encrypt a file on SD card

Main Worker

Main
thread

e —

Critical
path

| guemm—

Worker
thread

Encrypt

A

Function call

Disk read

Disk write

Main Worker

thread

Critical
path

/

thread

Disk read

Encrypt

v

Disk write

Function call

Slow due to computation

thread

\

Critical
path

¥

3

thread

Disk read

Encrypt

Disk write

Function call

Slow due to disk |/0

PerfProbe overview

Mobile device

Cloud server

— ——mz (2) pemmmme———-

A4

PerfProbe Manager "

App

App & library
function calls

Android Ul events
framework >

Linux Kernel events
kernel

(1)

User interaction profiling configuration

On-device: runtime profiling for
performance monitoring

¥

1. App’s call stack
2. Ul event trace
3. OS event trace

PerfProbe overview

Mobile device

Cloud server

"| characterization

A 4

| Resource factor

"| characterization

User interaction profiling configuration

T
e

— () e S S S S e
]
i* PerfProbe Manager |1
! ! ! +/- | Critical function
! ! 1| Performance »>
i App i | labels
1 1
i"|| App &library | Critical functions
function calls i & itireads
1
1
Android Ul event
framework
i i
i . i
| Linux pesesaanie | Relevant resource
kernel ! factors
e ——— _: | —————————— R —— -
o

On-device: runtime profiling for
performance monitoring

¥

1. App’s call stack
2. Ul event trace
3. OS event trace

¥

Server-side: offline trace
analysis for problem diagnosis

Research contribution

e Low-overhead, cross-layer runtime monitoring

o Sampling frequency adaptation for app profiling
along execution to limit the performance overhead

e Problem diagnosis through associating app and

OS-layer runtime events

o [Trace analysis based on decision tree learning to
pinpoint both code and system-level diagnosis hints

Runtime performance monitoring

e Android Ul framework instrumentation
o To measure user-perceived latency
e Traceview !
o Time spent in each function at an app’s call stack
o Code-level function execution
e Panappticon 4
o OS events over time on each thread during execution
o System resource usage

[1] Android Traceview. hitps://developer.android.com/studio/profile/traceview.htm|
[2] Panappticon: Event-Based Tracing to Optimize Mobile Application and Platform Performance. In CODES+ISSS *13.

https://developer.android.com/studio/profile/traceview.html

High overhead with app profiling

e Observation on call stack sampling in Traceview

o Android runtime periodically pauses all threads of an app
to dump its call stack => extra app latency (> 20% increase)

e Relative profiling overhead O(n). percentage of

increase in app latency due to a pause for sampling

o P(n): observed app pause duration in n'" sampling round
o S(n): sampling period in n" sampling round

O(n) = =2

S(n)+P(n)

Sampling frequency adaptation

e Adaptation of an app’s call stack sampling frequency

to maintain low overhead along app execution
o A configurable bound T for relative overhead (0 <T <1).

/

maz(S(n), P(n), 2% — P(n)), if high load
T

S(n+1) =4

| maz(P(n), min(S(n), Fin) — P(n))), otherwise

10

Problem diagnosis

Performance labels | +/-

v

Critical function
characterization

< Function call trace | Traceview

v Critical functions & threads

Resource factor
characterization

- OS event trace Panappticon

Relevant resource factors

=
p i

Step 1: critical function characterization

Performance label +/-

}

Critical function candidate
selection

i

Function feature extraction < Function call trace

;i

Decision tree characterization

Critical functions & threads
O
.

12

Critical function characterization

Property of critical functions
- Time-consuming

- Most correlated to the
performance slowdown

; funcl
func2
¢ func3
v
Fast run

Decision tree based critical function selection
- Input features: total time spent in a function
- Input label: indicator of performance slowdown

¥

Slow run

E funcl

EfuncZ

i func3

13

Critical function characterization

Total time in Posix.recvfromBytes
<=3.41sec
samples = 100
percentage_bad = 10%

Total time in NativeCrypto.SSL_read Total time in SQLiteConnection.nativeExecuteForCursorWindow
<= 6.74sec <= (0.44sec
samples = 88 samples = 12
percentage_bad = 1.1% percentage_bad = 75%
/ \ / Total time in Posix.writeBytes
samples = 87 samples = 1 samples = 2 <= 0.40sec
percentage_bad = 0% percentage_bad = 100% percentage_bad = 0% samples = 10
percentage_bad = 90%

LN

samples = 1 samples = 9
percentage_bad = 0% percentage_bad = 100%
Slowdown preconditions:

1) recvfromBytes > 3.41sec AND nativeExecuteForCursorWindow > 0.44sec AND
writeBytes > 0.40sec

Critical function characterization

Total time in Posix.recvfromBytes
<=3.41sec
samples = 100
percentage_bad = 10%

Total time in NativeCrypto.SSL_read Total time in SQLiteConnection.nativeExecuteForCursorWindow
<= 6.74sec <= (0.44sec
samples = 88 samples = 12
percentage_bad = 1.1% percentage_bad = 75%
/ \ / Total time in Posix.writeBytes
samples = 87 samples = 1 samples = 2 <= 0.40sec
percentage_bad = 0% percentage_bad = 100% percentage_bad = 0% samples = 10
* percentage_bad = 90%
samples = 1 samples = 9

percentage_bad = 0% percentage_bad = 100%

Slowdown preconditions:

1) recvfromBytes > 3.41sec AND nativeExecuteForCursorWindow > 0.44sec AND
writeBytes > 0.40sec

2) recvfromBytes <= 3.41sec AND SSL_read > 6.74sec

Step 2: resource factor characterization

Performance label

'

i Critical functions & threads

Relevant Interval Identification

v

Resource usage extraction <

v

Decision tree characterization

Relevant resource factors

e

OS event trace

16

Relevant resource factors for a critical function

e Resource usage for a critical function
o Relevant interval Imt: time intervals when a critical
function m is invoked by thread t
o Compute resource usage under all Imt for function m

e Decision tree based resource factor selection

o Input features: usage on various types of resource
o Input label: indicator of critical function slowdown
o Output tree nodes => relevant resource factors

17

Relevant resource factors

Total network-blocking time
<= 2.81sec
samples = 100
percentage_long = 12%

TrV N?‘alse

Total sleep time <= 4.11sec
samples = 88
long_percentage = 1.1%

Tn;e/ N?ilse

samples = 88 samples = 12
percentage_long = 0% percentage_long = 100%

samples = 87 samples = 1
long_percentage = 0% long_percentage = 100%

Posix.recvfromBytes

Longer time blocking for network I/O
-> network factor

NativeCrypto.SSL_read

Longer time in interruptible sleep
-> |/O event delay

18

Experiment results summary

e Cross-layer profiling incurs < 3.5% increase of delay
o Traceview’s sampling profiling incurs up to 22% increase

e Performed diagnosis on 22 popular Android apps
o Relevant resource factors: network/server, CPU, disk |/O
o Cross-layer vs. pure resource profiling: pinpointed true
relevant resource factors in 8 apps

e Android app developer study

o iNaturalist app developer acknowledged our diagnosis and
adopted our problem fixing direction (10x speedup)

19

Real-world app developer study

Real-world problem

Crawl user-reported performance

collection problems from issue trackers
Problem reproducing Repeated testing of related
interactions
Problem diagnosis PerfProbe’s cross-layer diagnosis
finding
Report to developer Collect developer’s feedback for

tool evaluation
20

iNaturalist case study
Slow loading of "ALL Guides" tab

(G LTl perfprobe opened this issue on Jul 6, 2017 - 9 comments

perfprobe commented on Jul 6, 2017 « edited ~

Dear developers,

We are applying our performance diagnosis tool PerfProbe to debug the long latency for clicking
"Guides" -> "ALL" tab. We observe that the loading time for this user interaction is quite long (on
average around 25 seconds and can increase to longer than 45 seconds in our test environment).
Through its system-wide profiling and tracing, PerfProbe discovers that the source of extra delay
results from longer delay in network blocking for object downloading during the execution of Android's
API call libcore/io/Posix.recvfromBytes, which is invoked by get method calls inside getAllGuides
method call in INaturalistService class. Based on our investigation of the source code, the getAllGuides
method call is issuing sequential HTTP GET request for the link "guides.json?/per_page=200&page=x"

page by page.

We hope the findings from our tool can be helpful for your debugging. We are also interested in helping
improving the performance of this interaction. One suggestion to improve the latency that we can come
up with is to limit the number of results retrieved through HTTP GET request and add a "Load more"
option in the Ul for loading more results. Please let use know if it will work or not. Thanks for your
attention!

iNaturalist case study

@ Closed Slow loading of "ALL Guides" tab #375

perfprobe opened this issue on Jul 6, 2017 - 9 comments

ﬁ tiwane commented on Dec 7, 2017
W

Just noting that loading the all guides tab still takes a long time.

perfprobe commented on Dec 9, 2017 Author

Hi @tiwane That's possible, as my pull request has not yet been merged. | am working with the
developer to integrate my pull request into the current code base. Will keep you posted.

budowski added a commit that referenced this issue on Dec 16, 2017

“ Faster loading for all guides - just show the first page of results ea6d289
(#..
budowski commented on Dec 16, 2017 Contributor

Eventually, we went with a simple solution - just show the first page of results for the "All guides" tab.
Since this amounts to 200 results, that is plenty - if a user is looking for a specific guide, he can just
search for it (instead of a /ot of scrolling).

Thanks for the effort @perfprobe, we appreciate it!

22

Conclusion

PerfProbe as a mobile diagnosis framework for
unpredictable performance problems

PerfProbe performs low-overhead, cross-layer
monitoring and trace collection

PerfProbe perfomrs cross-layer trace analysis for
performance problem diagnosis

23

Q&A

Thank You

High overhead with app profiling

e Traceview with sampling of call stack

102 o App 1 (Nexus 4)
App 1 (Nexus 6) 1
i i i i App 2 (Nexus 4) ——3 |
Setting a proper sampling < ®) AR 2 NERTH 6
. N\ ‘ App 3 4) =T
freq.uency re.o.|uwes f:\!op and T ol Agg3g§§3:6§ —
device-specific profiling £
o
.g’ 40 r
=
& 20
0

1ms Sms 10ms 20ms 50ms

App 1, 2, 3 performing similar optical Sl
character recognition workload

Usage-triggered monitoring

e Configuration interface

anh Q . . .
iy User interaction metafile
APK

Ul input
Ul output of interest

Performance Testing Repeated testing across environments and time

Tail latency > median latency + k*std, k=1, 2

Unpredictable performance slowdown?

26

Relevant resource factors on disk 1/0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

— SR £ of
- V0LEC P|ayer LI """"@'."E”—
- VLC Player (fixed) o L -
- Meitu IIIIIII _;"‘_ _____________]
i Meitu (fixed) o]
| S i

1 10

User waiting time (second)

Diagnosis findings: slowdown
due to disk I/O on Nexus 4

Fixing: increasing the size of
read-ahead buffer

Tail user waiting time reduced:
by 45% (to < 6sec) for VLC Player
by 42% (to < 7sec) for Meitu

27

Diagnosing user-reported problems

K9 mail Sync mailbox IMAP connection loss
iNaturalist Click All Guides Too many web requests
Riot Load a directory Computation bound for large bitmap loading
cgeo Search nearby cache Sequential network requests
GeoHashDroid Launch app GPS signal handling
TomaHawk Search songs Dependency on web requests

Developers invites us to implement proposed improvement
(iNaturalist and Riot app)

28

