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Abstract— Autonomous vehicles (AVs) are on the verge of
changing the transportation industry. Despite the fast devel-
opment of autonomous driving systems (ADSs), they still face
safety and security challenges. Current defensive approaches
usually focus on a narrow objective and are bound to specific
platforms, making them difficult to generalize. To solve these
limitations, we propose AVMaestro, an efficient and effective
policy enforcement framework for full-stack ADSs. AVMaestro
includes a code instrumentation module to systematically collect
required information across the entire ADS, which will then be
feed into a centralized data examination module, where users
can utilize the global information to deploy defensive methods
to protect AVs from various threats. AVMaestro is evaluated
on top of Apollo-6.0 and experimental results confirm that it
can be easily incorporated into the original ADS with almost
negligible run-time delay. We further demonstrate that utilizing
the global information can not only improve the accuracy of
existing intrusion detection methods, but also potentially inspire
new security applications.

I. INTRODUCTION

With the emergence of autonomous vehicles (AVs), the
world is undergoing a tremendous transportation revolution.
Despite the recent developments of AVs contributed by both
academic institutions and leading industries, autonomous
driving systems (ADSs) are still under active research and
face some safety and security challenges. As of today,
protecting AVs from both external malicious attacks and
internal system errors has became a crucial aspect of de-
signing reliable ADSs. However, there is no satisfying de-
fense method applied on existing ADSs, making self-driving
cars extremely vulnerable to sensor spoofing and jamming
attacks [21], [18]. Although prior works [16], [12], [8], [22]
have proposed ideas to detect sensor intrusions and system
anomalies, their solutions are very hard to generalize to other
software platforms. Furthermore, these techniques are only
implemented and evaluated on simple cyber-physical systems
such as drones and robotic vehicles that are far less complex
than state-of-the-art ADSs. Therefore, how to enforce safety
and security mechanisms on top of a full-stack ADS effec-
tively and efficiently still remains an open question. Given
the fact that more and more attacks have been developed to
threaten self-driving vehicles, implementing each individual
solution on an ADS software is too expensive to be practical.

1Ze Zhang, Sanjay Sri Vallabh Singapuram, Qingzhao Zhang, David
Ke Hong, Brandon Nguyen, Z. Morley Mao and Scott Mahlke are with
the Department of Electrical Engineering and Computer Science, Uni-
versity of Michigan, MI, USA. {zezhang, singam, gzzhang,
kehong, brng, zmao, mahlke}@umich.edu

2Qi Alfred Chen is with the Department of Computer Science, University
of California, Irvine, CA, USA. alfchen@uci.edu

As a result, there is an urgent need to develop a unified
platform that can be effectively applied to end-to-end ADSs
to protect AVs from a wide spectrum of known threats.

To address above limitations, we propose AVMaestro,
a practical policy enforcement platform to provide a safe
execution environment for autonomous driving systems. AV-
Maestro is a flexible framework that can be easily applied to
different ADSs without interrupting their original functional-
ities. Through a centralized data examination module, it pro-
vides a fine-grained method to manage the global information
used by the entire system and enables following opportuni-
ties: 1. collecting necessary information at a unified place
to implement various defensive techniques [16], [7] against
malicious attacks; 2. examining the global information to
detect data corruptions and issue alerts if any anomalous
activity is observed at run time. 3. intelligently updating
system-level configurations under different environmental
conditions to achieve safer road performance.

To strengthen the communication between the data ex-
amination module and the rest of the ADS system, we
also develop a code instrumentation module with two sets
of algorithms to help the AVMaestro systematically access
an ADS’s internal variables and configuration parameters
that can further improve the effectiveness of user-defined
defense techniques. In summary, our proposed AVMaestro
framework makes following contributions:

o We propose a new ADS communication paradigm with

a centralized data examination module built on top of
the modular ADS architecture, providing a single entry
point for developing and verifying safety and security
related implementations.

e We develop two sets of compiler analysis and in-
strumentation algorithms to provide inter-module com-
munications with system-level internal variables and
configuration parameters.

e We deploy two attack detection mechanisms using
AVMaestro to validate their effectiveness. 86.3% and
93.2% true positive rate are achieved for two techniques
in our attack injection experiments. We further propose
novel upgrades on these techniques to reduce false
positives and catch stealthy attacks by exploiting the
system-level information provided by the AVMaesto.

e We evaluate AVMaestro on top of Apollo-6.0 [2].
Experimental results demonstrate that the AVMaestro
framework only incurs 7.2 to 11.7 ms (1.89% - 3.06%)
end-to-end delay depending on different sizes of work-
loads, which is almost negligible to the original ADS.
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Fig. 1: AVMaestro high-level design.

II. BACKGROUND AND MOTIVATION

A commonly used software architecture [2], [1] for ADSs
is composed of different modules with each module dedi-
cated to a specific job, including object detection, motion pre-
diction, trajectory planning, and vehicle control. At run time,
each module in the system subscribes its required inputs
either from previous modules or from equipped sensors, and
executes implemented algorithms to calculate results. Once
the output is generated, it will be published as a message
to its subscribing modules with the help of an underlying
pub-sub communication system.

Over the past few years, various attacks have been de-
veloped to threaten self-driving vehicles. Based on previous
researches, nearly all of sensors equipped in AVs are vul-
nerable to sensor spoofing and jamming attacks, including
GPS [21], IMU [17], camera [15], RADAR [20], LiDAR [4],
and ultrasonic sensors [20]. Meanwhile, potential defense
mechanisms have also been discussed. In general, intrusion
detection techniques can be classified into two major cate-
gories. First, model-based approaches use predictive models
such as state space models [19], [5] or machine learning
models [9], [3] to make predictions for vehicle’s expected
behavior in near future. If the difference between the pre-
dicted value and the actual sensor measurement is greater
than a threshold, an anomaly is detected. Second, rule-based
approaches [7] will collect and analyze historical sensory
data and module outputs to generate a series of invariant
rules based on correlations and physical laws. If any run-time
behavior violates these rules, a possible error is marked.

Unfortunately, most of proposed defense methods are plat-
form specific and are only tested on simple cyber-physical
systems such as drones and robotic vehicles. Their evaluated
results cannot represent actual behaviors of advanced self-
driving cars. Thus, how to enforce extra safety and security
policies on production-level autonomous driving systems in
a realistic manner still remains an open question. Based on
our study, there is no effective method incorporated in the
current ADS design to protect AVs’ run-time environments
from either internal system errors or external malicious
attacks. To overcome this limitation, we propose AVMaestro:
a highly efficient and effective policy enforcement platform
for providing a safe autonomous driving environment.

III. AVMAESTRO DESIGN

Fig.1 illustrates the high-level diagram of the AVMaestro
framework which includes two major components. A data
examination module named Maestro is built on top of the
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Fig. 2: Structure of online Maestro module.

original ADS, serving as a centralized controller and provid-
ing a convenient entry point for all defensive methods. At
run time, the Maestro module will hold user-provided imple-
mentations and keep monitoring all communication messages
published from other modules in the system, making sure
the vehicle operates in a legal state. In case a suspicious
behavior is detected by implemented techniques, the Maestro
will trigger corresponding actions defined in policies such
as issuing alerts, performing a controlled stop, or enforcing
user-specified actions by overwriting specific message fields.

With the above setting, the Maestro module by default
can access all variables that are predefined in inter-module
communication messages. However, we find that a majority
of safety and security techniques either rely on or benefit
from certain system-level internal variables and configura-
tion parameters. To provide the Maestro module with these
information, we also develop a code instrumentation module
that includes two sets of static analysis and code instru-
mentation algorithms. Its goal is to automatically collect
and update necessary information by instrumenting proper
message communication APIs in the original ADS.

Note that the AVMaestro framework itself does not include
any defensive methods. Instead, it brings all information
together and provides a centralized place to implement and
verify them. More importantly, the message-level informa-
tion combined with the system-level information can not
only support a variety of defensive techniques, but also
further improve them and potentially inspire new security
applications. In following sections, we will provide more
detailed explanations on each developed module.

A. Maestro Module

A majority of defensive techniques [5], [16] need to
examine vehicular operations across different modules at the
same time. Thus, enforcing them inside of each separate
module is almost impossible because one module by default
can only access a fixed set of inputs. Besides, finding an
appropriate implementation location is also challenging due
to the asynchronous nature of each module. To provide
an effective place to deploy safety and security policies
without affecting original ADS’s functionalities, we propose
to fundamentally upgrade the existing ADS communication
behavior with a centralized message management and data
validation component, named Maestro that can analyze and
update all system-level information at a unified place.

Our proposed Maestro module (shown in Fig.2) can be
easily realized in different ADS platforms. To begin with,
it includes a reader and a writer that are responsible for



receiving and sending messages from/to other modules in a
target ADS, respectively. Depending on the run-time system
that an ADS is built on, these two parts can be implemented
using the standard message communication APIs. In addi-
tion, the Maestro holds all user-defined implementations,
making sure the autonomous vehicle operates in safe states.
To minimize the run-time overhead, two optimization strate-
gies are developed. First, since each module publishes its
messages asynchronously, the Maestro checks the sequence
number from different messages to avoid wasting computa-
tion resources from processing duplicated messages. Second,
instead of monitoring all communication messages at a fixed
frequency, the Maestro allows users to select only a subset
of messages and change its execution frequency to reduce
the message forwarding overhead. Finally, a configurable
message buffer is allocated to keep track a short history of
important variables. The message buffer plays a crucial role
in most of intrusion detection methods because they rely on
historical data as reference points to either make predictions
for the expected behavior or accumulate some errors to
catch anomalies. Furthermore, it also helps us reduce false
positives resulted from sensor fluctuations.

While the Maestro is activated, all other modules in the
ADS firstly send their output messages to it for examina-
tion. Based on the collected information and instrumented
policies, the Maestro determines whether all components
in the system work as expected. In normal situations, it
simply forwards the messages to their destinations. In case an
anomaly is detected, the Maestro module needs to overwrite
certain message fields to enforce user-specified countermea-
sures before sending them out. In addition, the Maestro also
sends out its own messages to update certain configuration
variables used by other components. The communication
diagram with the Maestro module is shown in Fig.1.

Using a centralized approach to enforce system-level
safety and security has proven to be a successful methodol-
ogy among many other domains including software defined
networks (DSN) and internet of things (IoT). Although the
ADS software share many similar characteristics as those
applications (asynchronous module execution, pub-sub mes-
sage communication etc.), no satisfying solution has been
applied to address these challenges. Therefore, we believe
adopting a centralized approach to perform fine-grained data
examination is a valuable design space to explore and can
potentially impact the future development of ADSs.

B. Code Instrumentation Module

Code instrumentation module is developed to empower
the communication between the Maestro module and the
rest of the system by automatically bringing the latest value
of hidden variables to the corresponding communication
messages. This instrumentation process gives the Maestro
extra capability to dynamically manage thousands of system-
level variables that can further benefit user-defined policies.

1) Internal Variable Instrumentation: To make the Mae-
stro access internal variables from a module, our proposed
algorithm will search the ADS’s code base to systemati-

if (FLAGS_use_navigation_mode &&
FLAGS_enable_navigation_mode_position_update) {

double curr.vehicle_heading = 0.0;

if (localization->pose().has_heading()) {
curr.vehicle_heading = localization->pose () .heading();

}

else {
curr.vehicle_heading = QuaternionToHeading(

10 orientation.qw(), orientation.gx(),

11 orientation.qy (), orientation.qgz());

O 00N B LN =

of the target
rumented Code */
et_curr_vehicle_heading (curr_vehicle_heading) ;

variable are neglected

16 |}

Listing 1: Instrumented code for variable customization.

Algorithm 1: Internal variable instrumentation

for v in variable_list do
if v not in code_base then

|  Error("Unsupported Variable!”)
else if v in message_declaration then

| continue
else
message_declaration.add(msg, v.module, v.name)
scope = {}
for def in definitions(v) do

| scope = Union(def.reaching_definitions, scope)
end
insertPts = scope.get_non_overlapping_intervals()
for curPt in insertPts do

| insert-msg_update_API(msg, v, curPt.last)
end

end
end

cally update these variables to the output messages of the
corresponding module. Specifically, a list of variables that
are associated with user-defined policies is firstly generated.
Then, the algorithm searches the entire ADS code base as
well as all communication messages to find if any variable’s
name matches with the items in the list. If no match is
found, the listed variable is therefore not appeared in the
current ADS. In this case, our proposed algorithm just reports
an error and then aborts. If the match is found in one of
the communication messages, no further action is needed
because the target variable is already included in one of the
outgoing messages.

However, if the match is only found in code base, confirm-
ing the target variable is a local module variable, following
instrumentation needs to be performed: First, depending in
which module the match is found, a new variable declaration
with the same name of the target variable is added in the
outgoing message of the corresponding module. Second,
we perform a backward data-flow analysis on the target
variable to find its definitions associated with its scope.
Lastly, a message updating API is inserted before exiting
the scope of the target variable. The updating API needs to
be instrumented at the end of the variable’s scope so that the
Maestro module can access its latest value from the published
message. If multiple definitions exist in parallel, the updating
API will be inserted at the end of each definition’s scope to
ensure it can be executed no matter which path is taken. The
proposed algorithm is summarized in Algorithm 1.

Listing 1 shows the instrumentation result with a local
variable named curr_vehicle_heading. From the static analy-



1 // Global Use of configuration variable

2 | double speed_limit FLAGS_planning.upper.speed-limit;
3 | // After code inst entation

4 | double speed_limit

5 maestromsg

6 | ——————
7 // Direct Use of configuration variable

8 speed_pid_controller_.SetPID(

9 lon_controller_conf.low.speed-pid-conf ());

10 | // After code instrumentation

11 speed_pid_controller_.SetPID (

14 // 1Inc sct of c iguration v

15 |/ In Init Function x/

16 query.relative_time. = control_conf->query_relative_time();
17 /% In Use Function =/

18 | target_point =

19 trajectory_analyzer.QueryNearestPointByAbsoluteTime (

20 Clock::NowInSeconds () + query.relative_time.);

21 // Af e instrumentation

22 ed at the beginning of each use function

23 query.relative_time. = maestro.msg.query.relative_time();

Listing 2: Instrumented code for configuration customization.

Algorithm 2: Configuration instrumentation

for config in configuration_list do
m_msg.add_declaration(config.name)
m_msg.initialize(config.name, config.val)
for user in config.uses do

if user in init_functions then
var = user.name

for local_user in varuses do
func = local_user.getFunction
insertPt = func.getEntryBlock.begin
createLoad(var, m_msg.config, insertPt)
end
else
latest_config = m_msg.config
user.replaceUseWith(latest_config)

end

end
end

sis, we find the definitions of the target variable is located
at line 4, 6, and 9 (shown with blue texts), with the scope
from line 4 to line 16. With this information, the message
updating API (shown with red texts) is inserted at line
15 to get the latest value of the target variable. To apply
this instrumentation method on different ADS platforms, we
simply update the message API and the declaration format,
whereas everything else remains the same.

2) Configuration Instrumentation: Configuration parame-
ters are statically declared in configuration files and directly
loaded to each module at run time. They are usually used
as fixed thresholds in rule-based detection techniques [5].
For example, the minimal distance to keep away from
obstacles should always no less than the value defined in
configurations. In addition, dynamically updating them can
customize vehicle behaviors which can achieve safer road
performance (e.g. reduce the upper limit of planning speed
at nights). To utilize these variables in policies, we declare
a new message type for the Maestro, which contains all
configuration variables that users want to manage.

Similar to the previous step, a list containing all configu-
ration variables appeared in user-defined policies is firstly
generated. For each variable in the list, a new variable
declaration with the same name is allocated in the Maestro’s
output message. By default, they are initialized with the
same value as the original configuration setting to maintain
the same behavior. Then, our algorithm performs a def-

use analysis on the code base, which will identify all the
uses of each target variable in the list. According to our
study, we find that configuration variables can be used in
three different ways: Global Use, Direct Use, and Indirect
Use. Global Use simply uses the configuration variable as a
global variable. In majority settings, Direct Use loads the
configuration value from a specific location. For Indirect
Use, however, the configuration value is firstly read from
the file and then stored into a local variable at the module
initialization stage. Later on, this local variable is used to
represent the original configuration wherever is necessary.

Our proposed instrumentation algorithm (summarized in
Algorithm 2) for the Global Use and the Direct Use is
straightforward to realize. It simply replaces the original use
of the configuration variable with the corresponding variable
included in the Maestro’s output message, as shown in the
first two part of Listing 2. The original use is shown at
line 2, 9 with blue texts and the updated use is shown
at line 5, 12 with red texts. However, if the use of the
variable appeared in constructors or initialization functions,
indicating the Indirect Use case, the above solution will not
work because these functions will only be executed once
even before the commutation starts. To solve this, we need to
trace further by identifying all the uses of the corresponding
local variable. For every function that the local variable is
used, a variable assignment instruction (line 23 in Listing
2) is inserted at the beginning of the function to overwrite
the stale value, making sure that the latest value from the
Maestro module is used as the configuration setting.

Both of instrumentation techniques only insert message
communication APIs at specific locations in the target ADS’s
code base. Thus, they will not affect the original module
behavior nor introduce any vulnerabilities.

IV. IMPLEMENTATION

Implementation. To evaluate the AVMaestro, we imple-
mented the Maestro module on top of Apollo Auto [2]. Our
static analysis algorithms are implemented as module passes
using the LLVM compiler infrastructure [13]. We firstly use
the willvm (Whole Program LLVM) to generate a combined
bitcode file for each module in Apollo, and then executes the
analysis pass on top of it. The analysis results are fed into a
Python script to perform the source-code instrumentation.

Experimental setup. All experiments are running on an
Intel 17-6700K CPU clocked at 4.0 GHz with 16 GB of
RAM and an NVIDIA GTX 1080 GPU equipped with
8GB memory, matching the minimal system requirements
by Apollo. To generate maps, traffics, and sensor inputs, we
bridge the Apollo with the LGSVL Simulator [14].

Attack Injection To validate AVMaestro’s effectiveness,
we inject corrupted signals to the ADS and see how it
responds. To do this, we intercept the sensor data published
from the LGSVL simulator, modify them based on specific
attack objectives and then forward the corrupted data to the
Apollo like the prior work [10]. For example, to simulate a
GPS spoofing attack, we can falsify the position variables
(x, y, and z) included in the GPS message.
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V. EVALUATION

Our proposed AVMaestro framework supports a variety
of safety and security related implementations, including
anomaly and intrusion detection, cross-module data valida-
tion, behavior customization, as well as attack mitigation.
In our evaluation, we will particularly focus on defensive
methods targeting sensor intrusion attacks. As we mentioned
in Section II, there are two major categories for attack
detection techniques: model-based detection and rule-based
detection. We select one technique from each category to
illustrate how to effectively deploy them using AVMaestro,
and how functionalities provided by the Maestro module
can further improve them. In addition, we discuss how to
define policies to make the autonomous vehicle recover
from an obstacle relocation attack. Since AVMaestro includes
a run-time component, we also measure its performance
overhead under the worse case scenario to make sure it can
be practically deployed in ADSs.

A. Model based intrusion detection

To implement this type of attack detection technique, we
use the non-linear physical model presented in the SAVIOR
[16] work. We also adopt the Extended Kalman Filter (EKF)
and the CUSUM algorithm to make predictions and calculate
residual errors. The CUSUM threshold is selected based on
an offline learning process and set to 0.32.

We validate this approach’s effectiveness by injecting a
GPS spoofing attack, a realistic and well-studied sensor
intrusion technique. The falsified signal will cause a 1-meter
deviation from the victim vehicle’s real position. As shown in
Fig.3, the Maestro is able to detect the spoofing attack right
after the injection while the vehicle is cruising. In total, we
perform the attack injection experiment 1000 times across
different maps and road segments, and are able to achieve
86.3% true positive rate (TPR) in 30ms with only 6.02%
false positive rate (FPR).

However, recent work [6] points out using a fixed thresh-
old is vulnerable to stealthy attacks which causes a small
deviation that will not be detected by the default defense
technique. Over a period of time, these small deviations
will accumulate to large errors and eventually crash the
vehicle. Similarly, we found the performance of our proposed
policy significantly drops if the falsified location is within
the standard deviation of normal data. For example, when
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Variable 1 Variable 2 Correlation FPR
position.y linear_velocity.y -0.741 8.77%
position.z orientation.qz 0.801 12.65%
orientation.qy euler_angles.y 0.877 3.18%
position_std_dev.x orientation_std_dev.x 0.845 2.22%
orientation.qw euler_angles.y -0.801 6.54%
linear_velocity.x euler_angles.z -0.964 2.55%
linear_acceleration.x linear_acceleration_vrf.x 0.899 4.66%
angular_velocity.z angular_velocity_vrf.z 0.999 0.3%
orientation_std_dev.z linear_velocity_std_dev.z 0.699 9.20%
linear_velocity_std_dev.x | linear_velocity_std_dev.y 0.915 0.83%

TABLE I: Selected variables for attack injection.

we launch the attack causing 0.2-meter deviation, the overall
TPR drops to only 11.7%. One way to detect these stealthy
attacks is to apply adaptive thresholds. Because the CUSUM
error largely depends on different driving situations such as
going straight or turning, accelerating or cruising, we can
lower the threshold if the AV is in stable states to minimize
the attack window. Although driving states are not explicitly
defined, they can be inferred from system-level variables.
Inspired by this idea, we export the scenario_type variable
(indicating the current driving scenario) from the scenario
manager in the planning module, and combine it with vehi-
cle’s acceleration and orientation statistics to categorize three
different driving states (cruising, accelerating, and turning).
For each driving state, we select the CUSUM threshold
separately. As shown in Fig.4, the Maestro module detects
stealthy attacks when the vehicle is in cruising state after
applying adaptive thresholds. Overall, we observe 76.4%
TPR (achieving 6.5x improvements compared to the fixed
threshold) and 8.59% FPR under stealthy attacks.

B. Invariant rule based intrusion detection

Natural redundancies exist in vehicles because the same
physical phenomenon could result symptoms in multiple sen-
sors [7]. One intuitive example is that pressing the accelerator
pedal will cause increase in both engine RPM and vehicle
speed. Thus, we can utilize correlations appearing in different
sensors and system variables to detect malfunctions.
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We collect control outputs and localization information
to identify correlations among sensors and actuators. In
addition, we export all related internal variables from the
localization and the control module to discover system-level
correlations. Overall, 184 variables are identified and their
pairwise correlation under the normal operation is shown as
the correlation matrix in Fig.5a. Using the same method as
the prior work [7], we define a strong relationship between
two variables if the absolute value of their correlation coeffi-
cient is greater than 0.5. In total, we identify 146 correlated
pairs, which reveals more than 10x information compared to
the original work that only focuses on sensory data.

To detect errors, we examine the run-time correlation be-
tween two variables in a small time window (10 consecutive
data points). If its run-time correlation significantly differs
from the normal value, an anomaly is detected. We select
10 correlated pairs (shown in Table I) related to control,
speed, and location variables to perform tests because they
will directly compromise vehicles’ safety once corrupted.
Similar to the original work [7], we replace one of the signal
values in a correlated pair with random noises to simulate
sensor jamming attacks. Each pair is tested 100 times with
different lane segments. As shown in Fig.5b, while the attack
is present, a spike will appear in run-time correlation results,
which can be detected using the proposed invariant rule. In
summary, the Maestro module is able to detect attacks with
93.2% TPR in 60ms.

However, one limitation with this attack detection tech-
nique is the false positives due to natural fluctuations in sen-
sory data. On average, we observe 5.09% FPR ranging from
0.3% to 12.65% shown in Table I. Fortunately, with more
correlations identified, we find one variable usually correlates
with multiple variables. Considering the worst case in Table
I (shown in red texts), the position.z also correlates with 2
more variables, angular_velocity.z and angular velocity_vrf.z.
Instead of relying on a single correlation result to determine
the anomaly, we can cross compare all related run-time
coefficients and perform a majority vote. In addition, we
observe the false positives resulted from sensor fluctuations
are short-term effects, but intrusion attacks need to last a
lot longer to become effective. Using the message buffer
from the Maestro module, we also apply a time window and
collect 20 consecutive coefficient results to check whether the
anomaly happens in transient or not. With these two methods,
the FPR can be reduced to only 1.02%, achieving about 5x
reduction. Note that the time window can also be applied to
the previous method to effectively eliminate false positives.

C. Attach Mitigation

In this section, we illustrate how users can define poli-
cies to detect and mitigate cross-module data corruptions
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Fig. 7: Behavioral differences under the attack.
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Fig. 8: Results for performance overhead.
discovered in the prior work [10], [11]. As shown in Fig.6,
the proposed threat corrupts some sensitive variables in the
TF message (tf-msg.x and tf-msg.y) through exploiting the
publish-overprivileged variables. Under this obstacle relo-
cation attack, the TF message will transmit falsified infor-
mation, making the perception module erroneously locate
perceived obstacles on the other side of the road (Fig.7a).
When the victim vehicle suddenly realizes the previously
detected obstacles are actually in front of the car and
therefore tries to stop, it is already too late, and the vehicle
collides with one of the obstacles (Fig.7b).

To mitigate this attack, we define an invariant rule to keep
checking the consistency of target variables between two
consecutive modules to make sure their values remain the
same. In case a mismatch is detected, the policy will replace
the corrupted variable with the correct information published
from the source module. With the defense method instru-
mented, the Maestro module can detect the attack in 12ms
and relocate obstacles with the correct information (Fig.7c).
Consequently, the AV successfully side passes obstacles and
reaches the destination (Fig.7d). Although this approach can
not be applied to zero-day attacks, AVMaestro still provides
an effective way to handle well-studied threats. In this work,
we only present one example due to the limited space, but
the proposed defense policy can be generalized to mitigate
other cross-module data corruptions as well.

D. Performance Overhead

AVMaestro imposes small run-time delays on the original
ADS because each message needs to go through the Maestro
module first before arriving at its destination. To evaluate
the run-time overhead, we feed the Maestro with all policies
presented in earlier sections. In addition, we extend the in-



strumented code by 10x and 20x to test Maestro’s scalability.
Fig.8 plots the cumulative distribution graph (CDG) and the
horizontal axis shows the overall latency from receiving sen-
sor inputs to generating control commands. This is a worst
case scenario in which all modules need to run sequentially.
In Apollo, there are 5 modules on the communication critical
path, meaning that the Maestro needs to trigger 4 times be-
fore generating final outputs. Realistically, since each module
runs asynchronously in the system, the message forwarding
overhead can be greatly masked. On average, the end-to-end
latency of the original ADS is 381.9ms, whereas Maestro-
Ix, Maestro-10x, and Maestro-20x (with the corresponding
code size) incur the mean latency of 389.1ms, 391.4ms,
and 393.6ms, respectively. We observe the overhead roughly
grows in a linear manner with Maestro’s code size, meaning
our proposed framework is scalable. Overall, AVMaestro
only imposes 1.89% to 3.06% delay on the original ADS,
depending on workload sizes.

In addition, we monitor the CPU, DRAM, and GPU
usages, and do not observe any noticeable change while the
Maestro is in use. Based on these results, we believe the
AVMaestro framework adds almost negligible overhead to
the original autonomous driving software.

VI. CONCLUSION

In this paper, we present AVMaestro, a highly efficient
and effective policy enforcement framework to provide a
safe execution environment for autonomous driving systems.
The entire design of the AVMaestro framework includes a
code instrumentation module and a centralized data exam-
ination module. Through evaluations, we demonstrate that
AVMaestro prototype can be easily applied to a production-
level ADS with almost negligible run-time overhead. More
importantly, it enables the deployment of various safety and
security techniques and can further improve their accuracy
with system-level information. We believe the AVMaestro
will inspire new security applications on state-of-the-art
ADSs. As our next steps, we are investigating a more com-
prehensive defense system built on top of the AVMaestro.
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