
A Systematic Framework to Identify Violations of
Scenario-dependent Driving Rules in Autonomous Vehicle

Software
Qingzhao Zhang

University of Michigan
qzzhang@umich.edu

David Ke Hong
University of Michigan
kehong@umich.edu

Ze Zhang
University of Michigan
zezhang@umich.edu

Qi Alfred Chen
University of California Irvine

alfchen@uci.edu

Scott Mahlke
University of Michigan
mahlke@umich.edu

Z. Morley Mao
University of Michigan

zmao@umich.edu

ABSTRACT
Safety compliance is paramount to the safe deployment of au-
tonomous vehicle (AV) technologies in real-world transportation
systems. As AVs will share road infrastructures with human drivers
and pedestrians, it is an important requirement for AVs to obey stan-
dard driving rules. Existing AV software testing methods, including
simulation and road testing, only check fundamental safety rules
such as collision avoidance and safety distance. Scenario-dependent
driving rules, including crosswalk and intersection rules, are more
complicated because the expected driving behavior heavily depends
on the surrounding circumstances. However, a testing framework is
missing for checking scenario-dependent driving rules on various
AV software.

In this paper, we design and implement a systematic framework
AVChecker for identifying violations of scenario-dependent driving
rules in AV software using formal methods. AVChecker represents
both the code logic of AV software and driving rules in proposed
formal specifications and leverages satisfiability modulo theory
(SMT) solvers to identify driving rule violations. To improve the
automation of systematic rule-based checking, AVChecker provides
a powerful user interface for writing driving rule specifications
and applies static code analysis to extract rule-related code logic
from the AV software codebase. Evaluations on two open-source
AV software platforms, Baidu Apollo and Autoware, uncover 19 true
violations out of 28 real-world driving rules covering crosswalks,
traffic lights, stop signs, and intersections. Seven of the violations
can lead to severe risks of a collision with pedestrians or blocking
traffic.

CCS CONCEPTS
• Software and its engineering → Automated static analy-
sis; • Computer systems organization → Embedded and cyber-
physical systems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’21 Abstracts, June 14–18, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8072-0/21/06.
https://doi.org/10.1145/3410220.3460101

KEYWORDS
Autonomous vehicle; Software system; Formal methods

ACM Reference Format:
Qingzhao Zhang, David Ke Hong, Ze Zhang, Qi Alfred Chen, Scott Mahlke,
and Z. Morley Mao. 2021. A Systematic Framework to Identify Violations
of Scenario-dependent Driving Rules in Autonomous Vehicle Software. In
Abstract Proceedings of the 2021 ACM SIGMETRICS / International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS ’21
Abstracts), June 14–18, 2021, Virtual Event, China. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3410220.3460101

1 INTRODUCTION
Emerging autonomous vehicles (AVs) hold great promise in trans-
forming today’s transportation systems and mobility services while
driving safety is the most important design requirement before their
real-world deployment. The AV is a complicated cyber-physical sys-
tem where a central AV software interacts with digital sensors and
physical devices to automatically drive the vehicle. Unanimously
agreed by AV software vendors and government authorities, the AV
developers should validate the AV software’s compliance with es-
sential safety standards (e.g., traffic laws, voluntary safety standards
from NTHSA [1], Responsibility-Sensitive Safety [9]).

Existing AV software safety testing approaches (e.g., simulation,
track, or road testing) [2, 4, 6] mainly use the black-box dynamic
testing. They collect driving traces from the real-world test drives
or simulations and then verify their safety properties. However,
these methods only target a limited set of driving rules related to
basic safety requirements such as collision avoidance and safe dis-
tance on urban roads or highways. Such fundamental rules should
be hold all time during the drive and only consider relation among
vehicles. More complicated driving rules including on-road cross-
walks, four-way stop signs, and intersections with traffic lights
are ignored by general AV testing techniques. We name the above
rules scenario-dependent driving rules because the expected
behavior of the AV heavily depends on the vehicle’s location as
well as surrounding circumstance. To check these complicated rules,
road/track testing or simulation requires test cases with high quan-
tity and diversity to enumerate possible map layouts and different
behaviors of all pedestrians and vehicles, which is difficult due to
regulation barriers, high cost/risk of real-world testing, and the
complexity of the driving scenarios even in simulators. In addition,

Session: All Systems Go SIGMETRICS '21 Abstracts, June 14–18, 2021, Virtual Event, China

43

https://doi.org/10.1145/3410220.3460101
https://doi.org/10.1145/3410220.3460101


a general framework is still missing for testing driving rule com-
pliance on AV software. Existing AV testing methods are mostly
designed for one specific AV software or one specific driving rule.
A general framework is in need to support various AV software
and a wide range of driving rules simultaneously.

To address this limitation, we propose AVChecker , a framework
for AV developers to systematically find violations of complex
scenario-dependent driving rules in AV software using formal
methods. Instead of enumerating test cases in dynamic testing,
AVChecker proposes a formal representation to model complex driv-
ing scenarios considering both the map layouts and behaviors of
moving objects. Then we can apply formal verification techniques
to identify driving rule violations by analyzing the formal represen-
tations. To start with, AVChecker takes driving rule specifications
and source code of AV motion planning (i.e., the module imple-
menting driving rules) as inputs. The driving rule specifications are
formatted in the proposed formal representation which is encoded
in Satisfiability Modulo Theory (SMT), and provided by issuers of
traffic rules. Meanwhile, a pipeline of static code analysis extracts
AV’s driving behaviors from the AV source code with the assistance
of code annotations provided by AV developers. The driving be-
haviors are encoded into a finite state machine based specification,
called behavior specification. Next, we apply formal methods (i.e.,
SMT theorem proving) to reveal the violation between the driving
rule specification and AV’s behavior specification. The violation
means that at one specific moment, the AV’s driving behavior is
different from the expected behavior defined in the driving rule. As
long as an violation exists between the two specifications, the SMT
solver can generate a counterexample which helps in reproducing
the identified flaw. AVChecker will post-process the generated vio-
lation case to construct a test case of simulation, which can help to
rule out false positives or debug the software.

To identify rule violations through formal methods, our work
addresses two key challenges. First, performing a direct comparison
between driving rules expressed in natural language and AV soft-
ware code is impractical because of the semantic gap. To bridge this
gap, we propose a domain-specific formal representation modeling
traffic scenes. Both rule specifications and AV’s behavior specifi-
cations are based on the same formal representation so that they
can be analyzed in the same domain. In addition, AVChecker pro-
vides user interfaces with various levels of abstractions to minimize
manual effort for generating specifications. Second, characterizing
continuous driving scenarios requires modeling real-world physical
dynamics in continuous time and space domains, which is challeng-
ing to realize using the theory of SMT because of the complexity.
Thus, the model of driving scenarios should abstract the real world
as much as possible but maintain a necessary expressivity for rule
compliance checking. AVChecker abstracts the continuous driving
behaviors by splitting the time sequence into moments and checks
AV’s driving decisions on each moment. To achieve the abstrac-
tion, AVChecker constructs one moment of the driving scenario
using SMT symbolic variables, called symbolic traffic snapshot.
AVChecker detects violations when AV’s behaviors break the driv-
ing rule at any possible traffic snapshot in this scenario without the
need of considering over-complicated details of physical dynamics
during a time sequence, making our SMT-based approach scalable
on complicated driving scenarios.

We prototype AVChecker using LLVM [8] and Z3 SMT solver [7],
and evaluate it on two open-source AV software platforms, Baidu
Apollo [3] and Autoware [5] which have 108K LOC and 42K LOC
in their planning modules respectively. Our prototype is able to
detect 19 true violations with driving rules for crosswalks, traf-
fic lights, stop signs, and intersection scenes on both platforms.
The simulation-based validation further confirms that the viola-
tions are all true positives and 7 of them may lead to severe safety
consequences, including the risk of hitting a sprinting pedestrian
on a crosswalk or blocking traffic at intersections. The violations
are caused by the incomplete implementation, ignorance of corner
cases, or bugs. The specification API of AVChecker is demonstrated
to be effective for reducing AV developer’s specification efforts,
requiring less than 10 lines of code for specifying different com-
plex scenes for the evaluated driving rules and reducing manual
specification efforts by 15x. Moreover, the snapshot abstraction sig-
nificantly reduces the state space so that AVChecker can complete
the violation identification within 13 seconds for each targeted rule.

The contributions of this paper are as follows:
1) We propose an AV domain-specific abstraction, which is a

formal representation amenable to SMT solving, to bridge the se-
mantic gap between software code and safety specifications. This
new abstraction simplifies the representation of infinite-state space
in the physical world and addresses the scalability challenge in
SMT-based driving rule compliance checking.

2) We design and implement AVChecker , to the best of our knowl-
edge, the first general framework for checking scenario-dependent
driving rules in AV software in a systematic manner. Using the user
interface of AVChecker , AV developers can reveal rule violations in
the code logic against predefined driving rule specifications with
the minimum manual effort.

3) We evaluate AVChecker on Baidu Apollo [3] and Autoware [5]
to check rule compliance with 28 DMV’s driving rules. AVChecker
uncovers 13 violations inApollo and 6 violations inAutoware, which
are all validated by simulation.

Our paper with full details can be found at [10].

REFERENCES
[1] [n.d.]. Automated Driving Systems 2.0: A Vision for Safety. https://www.nhtsa.

gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf.
[2] 2019. A Matter of Trust Ford’s Approach to Developing Self-driving Vehi-

cles. https://media.ford.com/content/dam/fordmedia/pdf/Ford_AV_LLC_FINAL_
HR_2.pdf.

[3] 2019. ApolloAuto: An open autonomous driving platform. https://github.com/
ApolloAuto/apollo.

[4] 2019. General Motors 2018 Self-Driving Safety Report. https://www.gm.com/
content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf.

[5] 2020. Autoware: Open-source software for self-driving vehicles. https://gitlab.
com/autowarefoundation/autoware.ai.

[6] 2020. Waymo Safety Report. https://waymo.com/safety.
[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems.

[8] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[9] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2017. On a Formal
Model of Safe and Scalable Self-driving Cars. CoRR (2017).

[10] Qingzhao Zhang, Ke David Hong, Ze Zhang, Qi Alfred Chen, Scott Mahlke, and
Z. Morley Mao. 2021. A Systematic Framework to Identify Violations of Scenario-
dependent Driving Rules in Autonomous Vehicle Software. Proceedings of the
ACM on Measurement and Analysis of Computing Systems (2021).

Session: All Systems Go SIGMETRICS '21 Abstracts, June 14–18, 2021, Virtual Event, China

44

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://media.ford.com/content/dam/fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf
https://media.ford.com/content/dam/fordmedia/pdf/Ford_AV_LLC_FINAL_HR_2.pdf
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://gitlab.com/autowarefoundation/autoware.ai
https://gitlab.com/autowarefoundation/autoware.ai
https://waymo.com/safety

	Abstract
	1 Introduction
	References



